RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
pytorch神经网络之卷积层与全连接层参数的设置方法-创新互联

当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错。

专注于为中小企业提供网站制作、成都网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业正镶白免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了数千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个。

全连接层的input_features是多少。首先来看一下这个简单的网络。这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢?

请看下文详解。

class AlexNet(nn.Module):
  def __init__(self):
    super(AlexNet, self).__init__()

    self.conv = nn.Sequential(
      nn.Conv2d(3, 96, kernel_size=11, stride=4),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(96, 256, kernel_size=5, padding=2),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(256, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 256, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2)
    )

    self.fc = nn.Sequential(
      nn.Linear(???, 4096)
      ......
      ......
    )


网站标题:pytorch神经网络之卷积层与全连接层参数的设置方法-创新互联
当前地址:http://lswzjz.com/article/shpsi.html