这篇文章主要介绍了如何通过微信公众平台实现在线客服机器人功能,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
成都创新互联为企业级客户提高一站式互联网+设计服务,主要包括成都网站建设、成都网站制作、重庆APP软件开发、重庆小程序开发公司、宣传片制作、LOGO设计等,帮助客户快速提升营销能力和企业形象,创新互联各部门都有经验丰富的经验,可以确保每一个作品的质量和创作周期,同时每年都有很多新员工加入,为我们带来大量新的创意。
通过微信公众平台实现在线客服机器人功能。主要的功能包括:简单对话、查询天气等服务。
1)关注
当微信用户关注公众账号时,可以给其适当的提示。可以是欢迎词,可以是帮助提示。
直接上代码:
class EventHandler : IHandler { ////// 请求的xml /// private string RequestXml { get; set; } ////// 构造函数 /// /// public EventHandler(string requestXml) { this.RequestXml = requestXml; } ////// 处理请求 /// ///public string HandleRequest() { string response = string.Empty; EventMessage em = EventMessage.LoadFromXml(RequestXml); if (em.Event.Equals("subscribe",StringComparison.OrdinalIgnoreCase)) { //回复欢迎消息 TextMessage tm = new TextMessage(); tm.ToUserName = em.FromUserName; tm.FromUserName = em.ToUserName; tm.CreateTime = Common.GetNowTime(); tm.Content = "欢迎您关注***,我是大哥大,有事就问我,呵呵!\n\n"; response = tm.GenerateContent(); } return response; } }
2)问候
简单的交流问候,比如你好、帮助等等,跟我们使用微信聊天一样,不过回应是由我们的程序响应。具体功能,可以根据自己的需要进行添加。
微信本来就是沟通的平台。这个案例,可以用于在线服务机器人,类似于淘宝的客服机器人,可是我们这个是微信版的。呵呵
其实,很简单,获取请求消息,根据关键字来匹配回应。当然这里可能要做的工作很多,如何支持智能匹配,如何支持模糊匹配等。
代码如下:
////// 文本信息处理类 /// public class TextHandler : IHandler { ////// 请求的XML /// private string RequestXml { get; set; } ////// 构造函数 /// /// 请求的xml public TextHandler(string requestXml) { this.RequestXml = requestXml; } ////// 处理请求 /// ///public string HandleRequest() { string response = string.Empty; TextMessage tm = TextMessage.LoadFromXml(RequestXml); string content = tm.Content.Trim(); if (string.IsNullOrEmpty(content)) { response = "您什么都没输入,没法帮您啊,%>_<%。"; } else { if (content.StartsWith("tq", StringComparison.OrdinalIgnoreCase)) { string cityName = content.Substring(2).Trim(); response = WeatherHelper.GetWeather(cityName); } else { response = HandleOther(content); } } tm.Content = response; //进行发送者、接收者转换 string temp = tm.ToUserName; tm.ToUserName = tm.FromUserName; tm.FromUserName = temp; response = tm.GenerateContent(); return response; } /// /// 处理其他消息 /// /// ///private string HandleOther(string requestContent) { string response = string.Empty; if (requestContent.Contains("你好") || requestContent.Contains("您好")) { response = "您也好~"; } else if (requestContent.Contains("傻")) { response = "我不傻!哼~ "; } else if (requestContent.Contains("逼") || requestContent.Contains("操")) { response = "哼,你说脏话! "; } else if (requestContent.Contains("是谁")) { response = "我是大哥大,有什么能帮您的吗?~"; } else if (requestContent.Contains("再见")) { response = "再见!"; } else if (requestContent.Contains("bye")) { response = "Bye!"; } else if (requestContent.Contains("谢谢")) { response = "不客气!嘿嘿"; } else if (requestContent == "h" || requestContent == "H" || requestContent.Contains("帮助")) { response = @"查询天气,输入tq 城市名称\拼音\首字母"; } else { response = "您说的,可惜,我没明白啊,试试其他关键字吧。"; } return response; } }
3)查询天气
这个功能需要请求实时查询的,请求官方的天气发布网站,然后解析其返回值,按照我们需要的格式,组织天气信息,最后发送给微信客户。
采用文本消息方式处理。
用户请求,只需输入:tq 城市名称/拼音/首字母,即可获取消息。
回复的消息:(以北京为例)
北京 2013年11月6日 星期三 今天:(17℃~4℃)晴北风4-5级转3-4级4-5级转3-4级 24小时穿衣指数:天气冷,建议着棉服、羽绒服、皮夹克加羊毛衫等冬季服装。年老体弱者宜着厚棉衣、冬大衣或厚羽绒服。 明天:(14℃~3℃)晴转多云微风小于3级 48小时穿衣指数:天气冷,建议着棉服、羽绒服、皮夹克加羊毛衫等冬季服装。年老体弱者宜着厚棉衣、冬大衣或厚羽绒服。
来看源码吧:
class WeatherHelper { ////// 城市集合字段 /// private static DictionarymCities; /// /// 城市集合 /// public static DictionaryCities { get { if (mCities == null) { LoadCities(); } return mCities; } } /// /// 加载城市 /// private static void LoadCities() { mCities = new Dictionary(); mCities.Clear(); mCities.Add("101010100", new City() { Code = "101010100", Name = "北京", PinYin = "beijing", FristLetter = "bj" }); mCities.Add("101020100", new City() { Code = "101020100", Name = "上海", PinYin = "shanghai", FristLetter = "sh" }); mCities.Add("101200101", new City() { Code = "101200101", Name = "武汉", PinYin = "wuhai", FristLetter = "wh" }); } /// /// 获取城市的天气 /// /// 城市名称、拼音或首字母 ///public static string GetWeather(string name) { string result = string.Empty; string cityCode = string.Empty; //获取城市编码 IEnumerable codes = from item in Cities where item.Value != null && (item.Value.Name.Equals(name, StringComparison.OrdinalIgnoreCase) || item.Value.PinYin.Equals(name, StringComparison.OrdinalIgnoreCase) || item.Value.FristLetter.Equals(name, StringComparison.OrdinalIgnoreCase)) select item.Value.Code; if (codes != null && codes.Count() > 0) { cityCode = codes.First (); } //http请求,获取天气 if (!string.IsNullOrEmpty(cityCode)) { string url = "http://www.php.cn/{0}.html"; url = string.Format(url, cityCode); WebRequest request = HttpWebRequest.Create(url); //超时时间为:2秒 request.Timeout = 2000; request.Credentials = CredentialCache.DefaultCredentials; WebResponse response = request.GetResponse(); StreamReader reader = new StreamReader(response.GetResponseStream(), Encoding.UTF8); string weahterInfo = reader.ReadToEnd(); if (string.IsNullOrEmpty(weahterInfo)) { result = "暂时没有取到天气数据,请稍后再试"; } else { XmlDocument doc = JsonConvert.DeserializeXmlNode(weahterInfo); if (doc != null) { XmlNode node = doc.DocumentElement; if (node != null) { StringBuilder builder = new StringBuilder(); builder.Append(node["city"].InnerText).Append("\n"); builder.Append(node["date_y"].InnerText).Append(" ").Append(node["week"].InnerText).Append("\n"); builder.Append("今天:").Append("(").Append(node["temp1"].InnerText).Append(")").Append(node["weather1"].InnerText).Append(node["wind1"].InnerText).Append(node["fl1"].InnerText).Append("\n"); builder.Append("24小时穿衣指数:").Append(node["index_d"].InnerText).Append("\n"); builder.Append("明天:").Append("(").Append(node["temp2"].InnerText).Append(")").Append(node["weather2"].InnerText).Append(node["wind2"].InnerText).Append(node["fl2"].InnerText).Append("\n"); builder.Append("48小时穿衣指数:").Append(node["index48_d"].InnerText).Append("\n"); result = builder.ToString(); } } #region 天气json数据格式 /* { "weatherinfo": { "city": "北京", "city_en": "beijing", "date_y": "2013年11月4日", "date": "", "week": "星期一", "fchh": "11", "cityid": "101010100", "temp1": "17℃~5℃", "temp2": "16℃~5℃", "temp3": "18℃~4℃", "temp4": "17℃~5℃", "temp5": "14℃~6℃", "temp6": "14℃~2℃", "tempF1": "62.6℉~41℉", "tempF2": "60.8℉~41℉", "tempF3": "64.4℉~39.2℉", "tempF4": "62.6℉~41℉", "tempF5": "57.2℉~42.8℉", "tempF6": "57.2℉~35.6℉", "weather1": "晴转多云", "weather2": "多云", "weather3": "多云转晴", "weather4": "晴转多云", "weather5": "多云转阴", "weather6": "阴转晴", "img1": "0", "img2": "1", "img3": "1", "img4": "99", "img5": "1", "img6": "0", "img7": "0", "img8": "1", "img9": "1", "img10": "2", "img11": "2", "img12": "0", "img_single": "0", "img_title1": "晴", "img_title2": "多云", "img_title3": "多云", "img_title4": "多云", "img_title5": "多云", "img_title6": "晴", "img_title7": "晴", "img_title8": "多云", "img_title9": "多云", "img_title10": "阴", "img_title11": "阴", "img_title12": "晴", "img_title_single": "晴", "wind1": "微风", "wind2": "微风", "wind3": "微风", "wind4": "微风", "wind5": "微风", "wind6": "北风4-5级", "fx1": "微风", "fx2": "微风", "fl1": "小于3级", "fl2": "小于3级", "fl3": "小于3级", "fl4": "小于3级", "fl5": "小于3级", "fl6": "4-5级", "index": "较冷", "index_d": "建议着大衣、呢外套加毛衣、卫衣等服装。体弱者宜着厚外套、厚毛衣。因昼夜温差较大,注意增减衣服。", "index48": "冷", "index48_d": "天气冷,建议着棉服、羽绒服、皮夹克加羊毛衫等冬季服装。年老体弱者宜着厚棉衣、冬大衣或厚羽绒服。", "index_uv": "中等", "index48_uv": "弱", "index_xc": "适宜", "index_tr": "适宜", "index_co": "舒适", "st1": "17", "st2": "5", "st3": "17", "st4": "5", "st5": "18", "st6": "6", "index_cl": "适宜", "index_ls": "适宜", "index_ag": "极不易发" } } */ #endregion } } else { result = "没有获取到该城市的天气,请确定输入了正确的城市名称,如\'北京\'或者\'beijing\'或者\'bj\'"; } //返回 return result; } /// /// 内部类:城市 /// internal class City { ////// 编码 /// public string Code { get; set; } ////// 名称 /// public string Name { get; set; } ////// 拼音 /// public string PinYin { get; set; } ////// 拼音首字母 /// public string FristLetter { get; set; } } }
感谢你能够认真阅读完这篇文章,希望小编分享的“如何通过微信公众平台实现在线客服机器人功能”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!
分享文章:如何通过微信公众平台实现在线客服机器人功能
标题URL:http://lswzjz.com/article/pgsdop.html