这篇文章主要介绍“redis的内存淘汰策略和过期删除策略的区别是什么”,在日常操作中,相信很多人在Redis的内存淘汰策略和过期删除策略的区别是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Redis的内存淘汰策略和过期删除策略的区别是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
目前成都创新互联公司已为上千的企业提供了网站建设、域名、虚拟主机、网站托管运营、企业网站设计、六安网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
前言
Redis 是可以对 key 设置过期时间的,因此需要有相应的机制将已过期的键值对删除,而做这个工作的就是过期键值删除策略。
Redis 的「内存淘汰策略」和「过期删除策略」,很多小伙伴容易混淆,这两个机制虽然都是做删除的操作,但是触发的条件和使用的策略都是不同的。
过期删除策略
Redis 是可以对 key 设置过期时间的,因此需要有相应的机制将已过期的键值对删除,而做这个工作的就是过期键值删除策略。
如何设置过期时间?
先说一下对 key 设置过期时间的命令。设置 key 过期时间的命令一共有 4 个:
expire
:设置 key 在 n 秒后过期,比如 expire key 100 表示设置 key 在 100 秒后过期; pexpire
:设置 key 在 n 毫秒后过期,比如 pexpire key2 100000 表示设置 key2 在 100000 毫秒(100 秒)后过期。 expireat
:设置 key 在某个时间戳(精确到秒)之后过期,比如 expireat key3 1655654400 表示 key3 在时间戳 1655654400 后过期(精确到秒); pexpireat
:设置 key 在某个时间戳(精确到毫秒)之后过期,比如 pexpireat key4 1655654400000 表示 key4 在时间戳 1655654400000 后过期(精确到毫秒)
当然,在设置字符串时,也可以同时对 key 设置过期时间,共有 3 种命令:
set
ex :设置键值对的时候,同时指定过期时间(精确到秒); set
px :设置键值对的时候,同时指定过期时间(精确到毫秒); setex
:设置键值对的时候,同时指定过期时间(精确到秒)。
如果你想查看某个 key 剩余的存活时间,可以使用 TTL
# 设置键值对的时候,同时指定过期时间位 60 秒 > setex key1 60 value1 OK # 查看 key1 过期时间还剩多少 > ttl key1 (integer) 56 > ttl key1 (integer) 52
如果突然反悔,取消 key 的过期时间,则可以使用 PERSIST
# 取消 key1 的过期时间 > persist key1 (integer) 1 # 使用完 persist 命令之后, # 查下 key1 的存活时间结果是 -1,表明 key1 永不过期 > ttl key1 (integer) -1
如何判定 key 已过期了?
每当我们对一个 key 设置了过期时间时,Redis 会把该 key 带上过期时间存储到一个过期字典(expires dict)中,也就是说「过期字典」保存了数据库中所有 key 的过期时间。
过期字典存储在 redisDb 结构中,如下:
typedef struct redisDb { dict *dict; /* 数据库键空间,存放着所有的键值对 */ dict *expires; /* 键的过期时间 */ .... } redisDb;
过期字典数据结构结构如下:
过期字典的 key 是一个指针,指向某个键对象;
过期字典的 value 是一个 long long 类型的整数,这个整数保存了 key 的过期时间;
过期字典的数据结构如下图所示:
字典实际上是哈希表,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找。当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:
如果不在,则正常读取键值;
如果存在,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期。
过期键判断流程如下图所示:
过期删除策略有哪些?
在说 Redis 过期删除策略之前,先跟大家介绍下,常见的三种过期删除策略:
定时删除;
惰性删除;
定期删除;
接下来,分别分析它们的优缺点。
定时删除策略是怎么样的?
定时删除策略的做法是,在设置 key 的过期时间时,同时创建一个定时事件,当时间到达时,由事件处理器自动执行 key 的删除操作。
定时删除策略的优点:可以保证过期 key 会被尽快删除,也就是内存可以被尽快地释放。因此,定时删除对内存是最友好的。
定时删除策略的缺点:在过期 key 比较多的情况下,删除过期 key 可能会占用相当一部分 CPU 时间,在内存不紧张但 CPU 时间紧张的情况下,将 CPU 时间用于删除和当前任务无关的过期键上,无疑会对服务器的响应时间和吞吐量造成影响。所以,定时删除策略对 CPU 不友好。
惰性删除策略是怎么样的?惰性删除策略的做法是,不主动删除过期键,每次从数据库访问 key 时,都检测 key 是否过期,如果过期则删除该 key。
惰性删除策略的优点:因为每次访问时,才会检查 key 是否过期,所以此策略只会使用很少的系统资源,因此,惰性删除策略对 CPU 时间最友好。
惰性删除策略的缺点:如果一个 key 已经过期,而这个 key 又仍然保留在数据库中,那么只要这个过期 key 一直没有被访问,它所占用的内存就不会释放,造成了一定的内存空间浪费。所以,惰性删除策略对内存不友好。
定期删除策略是怎么样的?定期删除策略的做法是,每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。
定期删除策略的优点:通过限制删除操作执行的时长和频率,来减少删除操作对 CPU 的影响,同时也能删除一部分过期的数据减少了过期键对空间的无效占用。
定期删除策略的缺点:
内存清理方面没有定时删除效果好,同时没有惰性删除使用的系统资源少。
难以确定删除操作执行的时长和频率。如果执行的太频繁,定期删除策略变得和定时删除策略一样,对CPU不友好;如果执行的太少,那又和惰性删除一样了,过期 key 占用的内存不会及时得到释放。
Redis 过期删除策略是什么?
前面介绍了三种过期删除策略,每一种都有优缺点,仅使用某一个策略都不能满足实际需求。
所以, Redis 选择「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。
Redis 是怎么实现惰性删除的?
Redis 的惰性删除策略由 db.c 文件中的 expireIfNeeded 函数实现,代码如下:
int expireIfNeeded(redisDb *db, robj *key) { // 判断 key 是否过期 if (!keyIsExpired(db,key)) return 0; .... /* 删除过期键 */ .... // 如果 server.lazyfree_lazy_expire 为 1 表示异步删除,反之同步删除; return server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) : dbSyncDelete(db,key); }
Redis 在访问或者修改 key 之前,都会调用 expireIfNeeded 函数对其进行检查,检查 key 是否过期:
如果过期,则删除该 key,至于选择异步删除,还是选择同步删除,根据lazyfree_lazy_expire 参数配置决定(Redis 4.0版本开始提供参数),然后返回 null 给客服端;
如果没有过期,不做任何处理,然后返回正常的键值对给客户端;
惰性删除的流程图如下:
Redis 是怎么实现定期删除的?
再回忆一下,定期删除策略的做法:每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。
1.这个间隔检查的时间是多长呢?
在 Redis 中,默认每秒进行 10 次过期检查一次数据库,此配置可通过 Redis 的配置文件 redis.conf 进行配置,配置键为 hz 它的默认值是 hz 10。
特别强调下,每次检查数据库并不是遍历过期字典中的所有 key,而是从数据库中随机抽取一定数量的 key 进行过期检查。
2.随机抽查的数量是多少呢?
我查了下源码,定期删除的实现在 expire.c 文件下的 activeExpireCycle 函数中,其中随机抽查的数量由 ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP 定义的,它是写死在代码中的,数值是 20。
也就是说,数据库每轮抽查时,会随机选择 20 个 key 判断是否过期。
接下来,详细说说 Redis 的定时删除的流程:
从过期字典中随机抽取 20 个 key;
检查这 20 个 key 是否过期,并删除已过期的 key;
如果本轮检查的已过期 key 的数量,超过 5 个(20/4),也就是「已过期 key 的数量」占比「随机抽取 key 的数量」大于 25%,则继续重复步骤 1;如果已过期的 key 比例小于 25%,则停止继续删除过期 key,然后等待下一轮再检查。
可以看到,定时删除是一个循环的流程。
那 Redis 为了保证定时删除不会出现循环过度,导致线程卡死现象,为此增加了定时删除循环流程的时间上限,默认不会超过 25ms。
针对定时删除的流程,我写了个伪代码:
do { //已过期的数量 expired = 0; //随机抽取的数量 num = 20; while (num--) { //1. 从过期字典中随机抽取 1 个 key //2. 判断该 key 是否过期,如果已过期则进行删除,同时对 expired++ } // 超过时间限制则退出 if (timelimit_exit) return; /* 如果本轮检查的已过期 key 的数量,超过 25%,则继续随机抽查,否则退出本轮检查 */ } while (expired > 20/4);
定时删除的流程如下:
内存淘汰策略
前面说的过期删除策略,是删除已过期的 key,而当 Redis 的运行内存已经超过 Redis 设置的最大内存之后,则会使用内存淘汰策略删除符合条件的 key,以此来保障 Redis 高效的运行。
如何设置 Redis 最大运行内存?
在配置文件 redis.conf 中,可以通过参数 maxmemory
不同位数的操作系统,maxmemory 的默认值是不同的:
在 64 位操作系统中,maxmemory 的默认值是 0,表示没有内存大小限制,那么不管用户存放多少数据到 Redis 中,Redis 也不会对可用内存进行检查,直到 Redis 实例因内存不足而崩溃也无作为。
在 32 位操作系统中,maxmemory 的默认值是 3G,因为 32 位的机器最大只支持 4GB 的内存,而系统本身就需要一定的内存资源来支持运行,所以 32 位操作系统限制最大 3 GB 的可用内存是非常合理的,这样可以避免因为内存不足而导致 Redis 实例崩溃。
Redis 内存淘汰策略有哪些?
Redis 内存淘汰策略共有八种,这八种策略大体分为「不进行数据淘汰」和「进行数据淘汰」两类策略。
1.不进行数据淘汰的策略
noeviction(Redis3.0之后,默认的内存淘汰策略) :它表示当运行内存超过最大设置内存时,不淘汰任何数据,而是不再提供服务,直接返回错误。
2.进行数据淘汰的策略
针对「进行数据淘汰」这一类策略,又可以细分为「在设置了过期时间的数据中进行淘汰」和「在所有数据范围内进行淘汰」这两类策略。
在设置了过期时间的数据中进行淘汰:
volatile-random:随机淘汰设置了过期时间的任意键值;
volatile-ttl:优先淘汰更早过期的键值。
volatile-lru(Redis3.0 之前,默认的内存淘汰策略):淘汰所有设置了过期时间的键值中,最久未使用的键值;
volatile-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰所有设置了过期时间的键值中,最少使用的键值;
在所有数据范围内进行淘汰:
allkeys-random:随机淘汰任意键值;
allkeys-lru:淘汰整个键值中最久未使用的键值;
allkeys-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰整个键值中最少使用的键值。
如何查看当前 Redis 使用的内存淘汰策略?
可以使用 config get maxmemory-policy 命令,来查看当前 Redis 的内存淘汰策略,命令如下:
127.0.0.1:6379> config get maxmemory-policy 1) "maxmemory-policy" 2) "noeviction"
可以看出,当前 Redis 使用的是 noeviction 类型的内存淘汰策略,它是 Redis 3.0 之后默认使用的内存淘汰策略,表示当运行内存超过最大设置内存时,不淘汰任何数据,但新增操作会报错。
如何修改 Redis 内存淘汰策略?
设置内存淘汰策略有两种方法:
方式一:通过“config set maxmemory-policy <策略>”命令设置。它的优点是设置之后立即生效,不需要重启 Redis 服务,缺点是重启 Redis 之后,设置就会失效。
方式二:通过修改 Redis 配置文件修改,设置“maxmemory-policy <策略>”,它的优点是重启 Redis 服务后配置不会丢失,缺点是必须重启 Redis 服务,设置才能生效。
LRU 算法和 LFU 算法有什么区别?
LFU 内存淘汰算法是 Redis 4.0 之后新增内存淘汰策略,那为什么要新增这个算法?那肯定是为了解决 LRU 算法的问题。
接下来,就看看这两个算法有什么区别?Redis 又是如何实现这两个算法的?
什么是 LRU 算法?
LRU 全称是 Least Recently Used 翻译为最近最少使用,会选择淘汰最近最少使用的数据。
传统 LRU 算法的实现是基于「链表」结构,链表中的元素按照操作顺序从前往后排列,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的元素即可,因为链表尾部的元素就代表最久未被使用的元素。
Redis 并没有使用这样的方式实现 LRU 算法,因为传统的 LRU 算法存在两个问题:
需要用链表管理所有的缓存数据,这会带来额外的空间开销;
当有数据被访问时,需要在链表上把该数据移动到头端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。
Redis 是如何实现 LRU 算法的?
Redis 实现的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是在 Redis 的对象结构体中添加一个额外的字段,用于记录此数据的最后一次访问时间。
当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。
Redis 实现的 LRU 算法的优点:
不用为所有的数据维护一个大链表,节省了空间占用;
不用在每次数据访问时都移动链表项,提升了缓存的性能;
但是 LRU 算法有一个问题,无法解决缓存污染问题,比如应用一次读取了大量的数据,而这些数据只会被读取这一次,那么这些数据会留存在 Redis 缓存中很长一段时间,造成缓存污染。
因此,在 Redis 4.0 之后引入了 LFU 算法来解决这个问题。
什么是 LFU 算法?
LFU 全称是 Least Frequently Used 翻译为最近最不常用的,LFU 算法是根据数据访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。
所以, LFU 算法会记录每个数据的访问次数。当一个数据被再次访问时,就会增加该数据的访问次数。这样就解决了偶尔被访问一次之后,数据留存在缓存中很长一段时间的问题,相比于 LRU 算法也更合理一些。
Redis 是如何实现 LFU 算法的?
LFU 算法相比于 LRU 算法的实现,多记录了「数据的访问频次」的信息。Redis 对象的结构如下:
typedef struct redisObject { ... // 24 bits,用于记录对象的访问信息 unsigned lru:24; ... } robj;
Redis 对象头中的 lru 字段,在 LRU 算法下和 LFU 算法下使用方式并不相同。
在 LRU 算法中,Redis 对象头的 24 bits 的 lru 字段是用来记录 key 的访问时间戳,因此在 LRU 模式下,Redis可以根据对象头中的 lru 字段记录的值,来比较最后一次 key 的访问时间长,从而淘汰最久未被使用的 key。
在 LFU 算法中,Redis对象头的 24 bits 的 lru 字段被分成两段来存储,高 16bit 存储 ldt(Last Decrement Time),低 8bit 存储 logc(Logistic Counter)。
ldt 是用来记录 key 的访问时间戳;
logc 是用来记录 key 的访问频次,它的值越小表示使用频率越低,越容易淘汰,每个新加入的 key 的logc 初始值为 5。
注意,logc 并不是单纯的访问次数,而是访问频次(访问频率),因为 logc 会随时间推移而衰减的。
在每次 key 被访问时,会先对 logc 做一个衰减操作,衰减的值跟前后访问时间的差距有关系,如果上一次访问的时间与这一次访问的时间差距很大,那么衰减的值就越大,这样实现的 LFU 算法是根据访问频率来淘汰数据的,而不只是访问次数。访问频率需要考虑 key 的访问是多长时间段内发生的。key 的先前访问距离当前时间越长,那么这个 key 的访问频率相应地也就会降低,这样被淘汰的概率也会更大。
对 logc 做完衰减操作后,就开始对 logc 进行增加操作,增加操作并不是单纯直接 + 1,而是根据概率增加,如果 logc 越大的 key,它的 logc 就越难再增加。
所以,Redis 在访问 key 时,对于 logc 是这样变化的:
先按照上次访问距离当前的时长,来对 logc 进行衰减;
然后,再按照一定概率增加 logc 的值
redis.conf 提供了两个配置项,用于调整 LFU 算法从而控制 logc 的增长和衰减:
lfu-decay-time 用于调整 logc 的衰减速度,它是一个以分钟为单位的数值,默认值为1,lfu-decay-time 值越大,衰减越慢;
lfu-log-factor 用于调整 logc 的增长速度,lfu-log-factor 值越大,logc 增长越慢。
undefined
到此,关于“Redis的内存淘汰策略和过期删除策略的区别是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!
网页标题:Redis的内存淘汰策略和过期删除策略的区别是什么
文章位置:http://lswzjz.com/article/jjjhpc.html