SparkonYarn安装配置
1、说明
站在用户的角度思考问题,与客户深入沟通,找到光泽网站设计与光泽网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站制作、成都做网站、外贸营销网站建设、企业官网、英文网站、手机端网站、网站推广、域名与空间、网络空间、企业邮箱。业务覆盖光泽地区。
这篇文章是在xxx基础上进行部署的,需要hadoop的相关配置和依赖等等,Spark on Yarn的模式,Spark安装配置好即可,在Yarn集群的所有节点安装并同步配置,在无需启动服务,没有master、slave之分,Spark提交任务给Yarn,由ResourceManager做任务调度。
2、安装
yum -y install spark-core spark-netlib spark-python
3、配置
vim /etc/spark/conf/spark-defaults.conf spark.eventLog.enabled false spark.executor.extraJavaOptions -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -XX:MaxHeapFreeRatio=70 -XX:+CMSClassUnloadingEnabled spark.driver.extraJavaOptions -Dspark.driver.log.level=INFO -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -XX:MaxHeapFreeRatio=70 -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=512M spark.master yarn ##指定spark的运行模式
PS:关于spark-env.sh的配置,因为我的hadoop集群是通过yum安装的,估使用默认配置就可以找到hadoop的相关配置和依赖,如果hadoop集群是二进制包安装需要修改相应的路径
4、测试
a、通过spark-shell 测试
[root@ip-10-10-103-144 conf]# cat test.txt 11 22 33 44 55 [root@ip-10-10-103-144 conf]# hadoop fs -put test.txt /tmp/ Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=128m; support was removed in 8.0 [roo[root@ip-10-10-103-246 conf]# spark-shell Java HotSpot(TM) 64-Bit Server VM warning: ignoring option MaxPermSize=512M; support was removed in 8.0 Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/usr/lib/zookeeper/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/lib/flume-ng/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/lib/parquet/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/lib/avro/avro-tools-1.7.6-cdh6.11.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 1.6.0 /_/ Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_121) Type in expressions to have them evaluated. Type :help for more information. Spark context available as sc (master = yarn-client, app id = application_1494472050574_0009). SQL context available as sqlContext. scala> val file=sc.textFile("hdfs://mycluster:8020/tmp/test.txt") file: org.apache.spark.rdd.RDD[String] = hdfs://mycluster:8020/tmp/test.txt MapPartitionsRDD[1] at textFile at:27 scala> val count=file.flatMap(line=>line.split(" ")).map(test=>(test,1)).reduceByKey(_+_) count: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at :29 scala> count.collect() res0: Array[(String, Int)] = Array((33,1), (55,1), (22,1), (44,1), (11,1)) scala>
b、通过run-example测试
[root@ip-10-10-103-246 conf]# /usr/lib/spark/bin/run-example SparkPi 2>&1 | grep "Pi is roughly" Pi is roughly 3.1432557162785812
5、遇到的问题
执行spark-shell计算报错如下:
scala> val count=file.flatMap(line=>line.split(" ")).map(word=>(word,1)).reduceByKey(_+_) 17/05/11 21:06:28 ERROR lzo.GPLNativeCodeLoader: Could not load native gpl library java.lang.UnsatisfiedLinkError: no gplcompression in java.library.path at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1867) at java.lang.Runtime.loadLibrary0(Runtime.java:870) at java.lang.System.loadLibrary(System.java:1122) at com.hadoop.compression.lzo.GPLNativeCodeLoader.(GPLNativeCodeLoader.java:32) at com.hadoop.compression.lzo.LzoCodec. (LzoCodec.java:71) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:348) at $line20.$read. ( :48) at $line20.$read$. ( :52) at $line20.$read$. ( ) at $line20.$eval$. ( :7) at $line20.$eval$. ( ) at $line20.$eval.$print( ) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1045) at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1326) at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:821) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:852) at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:800) at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857) at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
解决方案:
在spark-env.sh添加
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/hadoop/lib/native/
让Spark能找到lzo的lib包即可。
文章标题:SparkonYarn安装配置
网站链接:http://lswzjz.com/article/jihpco.html