本篇文章给大家分享的是有关Python中怎么利用toolz库实现函数式编程,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
网站建设哪家好,找创新互联公司!专注于网页设计、网站建设、微信开发、微信小程序定制开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了浚县免费建站欢迎大家使用!
使用 toolz 库来构建。 这个库具有操作此类函数的函数,并且它们在纯函数中表现得特别好。 在函数式编程世界中,它们通常被称为“高阶函数”,因为它们将函数作为参数,将函数作为结果返回。
让我们从这里开始:
def add_one_word(words, word): return words.set(words.get(word, 0) + 1)
这个函数假设它的***个参数是一个不可变的类似字典的对象,它返回一个新的类似字典的在相关位置递增的对象:这就是一个简单的频率计数器。
但是,只有将它应用于单词流并做归纳时才有用。 我们可以使用内置模块 functools
中的归纳器。
functools.reduce(function, stream, initializer)
我们想要一个函数,应用于流,并且能能返回频率计数。
我们首先使用 toolz.curry
函数:
add_all_words = curry(functools.reduce, add_one_word)
使用此版本,我们需要提供初始化程序。但是,我们不能只将 pyrsistent.m
函数添加到 curry
函数中; 因为这个顺序是错误的。
add_all_words_flipped = flip(add_all_words)
flip
这个高阶函数返回一个调用原始函数的函数,并且翻转参数顺序。
get_all_words = add_all_words_flipped(pyrsistent.m())
我们利用 flip
自动调整其参数的特性给它一个初始值:一个空字典。
现在我们可以执行 get_all_words(word_stream)
这个函数来获取频率字典。 但是,我们如何获得一个单词流呢? Python 文件是按行供流的。
def to_words(lines): for line in lines: yield from line.split()
在单独测试每个函数后,我们可以将它们组合在一起:
words_from_file = toolz.compose(get_all_words, to_words)
在这种情况下,组合只是使两个函数很容易阅读:首先将文件的行流应用于 to_words
,然后将 get_all_words
应用于 to_words
的结果。 但是文字上读起来似乎与代码执行相反。
当我们开始认真对待可组合性时,这很重要。有时可以将代码编写为一个单元序列,单独测试每个单元,***将它们全部组合。如果有几个组合元素时,组合的顺序可能就很难理解。
toolz
库借用了 Unix 命令行的做法,并使用 pipe
作为执行相同操作的函数,但顺序相反。
words_from_file = toolz.pipe(to_words, get_all_words)
现在读起来更直观了:将输入传递到 to_words
,并将结果传递给 get_all_words
。 在命令行上,等效写法如下所示:
$ cat files | to_words | get_all_words
toolz
库允许我们操作函数,切片、分割和组合,以使我们的代码更容易理解和测试。
以上就是Python中怎么利用toolz库实现函数式编程,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。
新闻名称:Python中怎么利用toolz库实现函数式编程
文章路径:http://lswzjz.com/article/jehdip.html