这篇文章主要讲解了“Hadoop3的主要优缺点有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Hadoop3的主要优缺点有哪些”吧!
站在用户的角度思考问题,与客户深入沟通,找到和龙网站设计与和龙网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站设计、网站制作、企业官网、英文网站、手机端网站、网站推广、空间域名、网页空间、企业邮箱。业务覆盖和龙地区。
Hadoop 3的主要优缺点
Hadoop旨在存储和管理大量数据。Hadoop有许多优点,例如,它是免费和开源的,易于使用的,其性能等。但是,另一方面,它也有一些缺点。因此,让我们开始探索Hadoop的主要优点和缺点。
Hadoop的优势
Hadoop易于使用,可扩展且具有成本效益。在这里,我们将讨论Hadoop的12大优势
Hadoop的优势
1.各种数据源
Hadoop存储各种数据。数据可以来自各种来源,并且可以是结构化或非结构化的形式。Hadoop可以从各种数据中获取价值。Hadoop可以接受文本文件,XML文件,图像,CSV文件等中的数据。
2.高性价比
Hadoop是一种经济的解决方案,因为它使用集群来存储数据。而硬件是便宜的机器,因此将节点添加到框架的成本不是很高。在Hadoop 3.0中,只有50%的存储开销,而在Hadoop2.x中只有200%。由于冗余数据显着减少,因此需要较少的机器来存储数据。
3.表现
Hadoop及其分布式处理和分布式存储体系结构可高速处理大量数据。Hadoop甚至在2008年击败超级计算机成为最快的计算机。它将输入数据文件划分为多个块,并将数据存储在多个节点上的block块中。它还将用户提交的任务分为多个子任务,这些子任务分配给包含所需数据的这些工作节点,并且这些子任务并行运行,从而提高了性能。
4.容错
在Hadoop 3.0中,擦除编码提供了容错能力。例如,6个数据块通过使用擦除编码技术产生3个奇偶校验块,因此HDFS总共存储了这9个块。如果任何节点发生故障,可以使用这些奇偶校验块和其余数据块来恢复受影响的数据块。
5.高度可用
在Hadoop 2.x中,HDFS架构具有一个活动的NameNode和一个Standby NameNode,因此,如果NameNode发生故障,则我们可以依靠备用NameNode。但是Hadoop 3.0支持多个备用NameNode,从而使系统具有更高的可用性,因此如果两个或多个NameNode崩溃,它可以继续运行。
6.低网络流量
在Hadoop中,用户提交的每个作业都被分为多个独立的子任务,并且这些子任务被分配给数据节点,从而将少量代码移动到数据中,而不是将大量数据移动到代码中,从而导致低网络流量。
7.高通量
吞吐量是指单位时间内完成的工作。Hadoop以分布式方式存储数据,从而可以轻松地使用分布式处理。给定的作业分为多个小作业,这些作业并行处理数据块,从而提供高吞吐量。
8.开源
Hadoop是一种开源技术,即其源代码可免费获得。我们可以修改源代码以适合特定要求。
9.可扩展
Hadoop按照水平可伸缩性原理工作,即我们需要将整个计算机添加到节点群集中,而不要像添加RAM,磁盘等那样更改计算机的配置,这被称为垂直可伸缩性。可以将节点动态添加到Hadoop集群,使其成为可扩展的框架。
10.易于使用
Hadoop框架提供分布式编程模型,MapReduce的程序员只需按固定的模板编写分布式计算程序,而不需要关心他们如何实现分布式处理,它是在后台自动完成。
11.相容性
大数据的大多数新兴技术都与Hadoop兼容,例如Spark,Flink等。它们具有在Hadoop上作为后端工作的处理引擎,即我们将Hadoop用作它们的数据存储平台。
12.支持多种语言
开发人员可以在Hadoop上使用多种语言(例如C,C ++,Perl,Python,Ruby和Groovy)进行编码。
Hadoop的缺点
Hadoop的缺点
1.小文件问题
Hadoop适用于处理相对较大的文件,但是涉及到处理大量小文件的时(小文件比Hadoop的块大小小得多的文件,默认情况下,该块大小可以为128MB或256MB),Hadoop效率不高。这些大量的小文件使Namenode过载,因为Namenode存储了系统的名称空间,并使Hadoop难以运行。
2.天生脆弱
Hadoop用Java编写,Java是一种广泛使用的编程语言,因此它容易被网络犯罪分子利用,这使得Hadoop容易受到安全漏洞的攻击。
3.处理费用
在Hadoop中,数据是从磁盘读取并写入磁盘的,这在我们处理兆兆字节和PB级数据时使读/写操作非常昂贵。Hadoop无法执行内存中计算,因此会增加处理开销。
4.仅支持批处理
Hadoop的核心是一个批处理引擎,该引擎在流处理方面效率不高。它不能以低延迟实时生成输出。它仅适用于我们在处理之前预先收集并存储在文件中的数据。
5.迭代处理
Hadoop本身无法进行迭代处理。机器学习 或迭代处理具有周期性的数据流,而Hadoop的数据是在多个阶段链中流动的,其中一个阶段的输出成为另一阶段的输入。
6.安全性
为了安全起见,Hadoop使用难以管理的Kerberos身份验证。它缺少存储和网络级别的加密,这是一个主要问题。
感谢各位的阅读,以上就是“Hadoop3的主要优缺点有哪些”的内容了,经过本文的学习后,相信大家对Hadoop3的主要优缺点有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!
网站名称:Hadoop3的主要优缺点有哪些
网站网址:http://lswzjz.com/article/jddgio.html