这篇文章将为大家详细讲解有关Python爬虫中破解验证码识别和弹窗处理,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
站在用户的角度思考问题,与客户深入沟通,找到博罗网站设计与博罗网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、成都网站建设、企业官网、英文网站、手机端网站、网站推广、域名与空间、虚拟空间、企业邮箱。业务覆盖博罗地区。
前言
在我们写爬虫的过程中,目标网站常见的干扰手段就是设置验证码等,本就将基于Selenium实战讲解如何处理弹窗和验证码,爬取的目标网站为某仪器预约平台
可以看到登录所需的验证码构成比较简单,是彩色的标准数字配合简单的背景干扰
因此这里的验证码识别不需要借助人工智能的手段,可直接利用二值法对图片处理后交给谷歌的识别引擎tesseract-OCR即可获得图中的数字。
Python实战
首先导入所需模块
import re # 图片处理 from PIL import Image # 文字识别 import pytesseract # 浏览器自动化 from selenium import webdriver import time
解决弹出框问题
先尝试打开示例网站
url = 'http://lims.gzzoc.com/client' driver = webdriver.Chrome() driver.get(url) time.sleep(30)
有趣的地方出现了,网站显示了一个我们前面没有看到的弹窗,简单说一下弹窗的知识点,初学者可以将弹出框简单分为alert和非alert
alert式弹出框
alert(message)方法用于显示带有一条指定消息和一个 OK 按钮的警告框
confirm(message)方法用于显示一个带有指定消息和 OK 及取消按钮的对话框
prompt(text,defaultText)方法用于显示可提示用户进行输入的对话框
看一下这个弹出框的js是怎么写的:
看起来似乎是alert式弹出框,那么直接用driver.switch_to.alert吗?先不急
非传统alert式弹出框的处理
弹出框位于div层,跟平常定位方法一样
弹出框是嵌套的iframe层,需要切换iframe
弹出框位于嵌套的handle,需要切换窗口
所以我们对这个弹出框进行元素审查
所以问题实际上很简单,直接定位按钮并点击即可
url = 'http://lims.gzzoc.com/client' driver = webdriver.Chrome() driver.get(url) time.sleep(1) driver.maximize_window() # 最大化窗口 driver.find_element_by_xpath("//div[@class='jconfirm-buttons']/button").click()
获取图片位置并截图
二值法处理验证码的简单思路如下:
切割截取验证码所在的图片
转为灰度后二值法将有效信息转为黑,背景和干扰转为白色
处理后的图片交给文字识别引擎
输入返回的结果并提交
切割截取验证码的图片进一步思考解决策略:首先获取网页上图片的css属性,根据size和location算出图片的坐标;然后截屏;最后用这个坐标进一步去处理截屏即可(由于验证码js的特殊性,不能简单获取img的href后下载图片后读取识别,会导致前后不匹配)
img = driver.find_element_by_xpath('//img[@id="valiCode"]') time.sleep(1) location = img.location size = img.size # left = location['x'] # top = location['y'] # right = left + size['width'] # bottom = top + size['height'] left = 2 * location['x'] top = 2 * location['y'] right = left + 2 * size['width'] - 10 bottom = top + 2 * size['height'] - 10 driver.save_screenshot('valicode.png') page_snap_obj = Image.open('valicode.png') image_obj = page_snap_obj.crop((left, top, right, bottom)) image_obj.show()
正常情况下直接使用注释的四行代码即可,但不同的电脑不同的浏览器,缩放倍率存在差异,因此如果截取出的图存在偏差这需要考虑乘上倍率系数。最后可以再加减数值进行微调
可以看到图片这成功截取出来了!
验证码图片的进一步处理
这个阈值需要具体用Photoshop或者其他工具尝试,即找到一个像素阈值能够将灰度图片中真实数据和背景干扰分开,本例经测试阈值为205
img = image_obj.convert("L") # 转灰度图 pixdata = img.load() w, h = img.size threshold = 205 # 遍历所有像素,大于阈值的为黑色 for y in range(h): for x in range(w): if pixdata[x, y] < threshold: pixdata[x, y] = 0 else: pixdata[x, y] = 255
根据像素二值结果重新生成图片
data = img.getdata() w, h = img.size black_point = 0 for x in range(1, w - 1): for y in range(1, h - 1): mid_pixel = data[w * y + x] if mid_pixel < 50: top_pixel = data[w * (y - 1) + x] left_pixel = data[w * y + (x - 1)] down_pixel = data[w * (y + 1) + x] right_pixel = data[w * y + (x + 1)] if top_pixel < 10: black_point += 1 if left_pixel < 10: black_point += 1 if down_pixel < 10: black_point += 1 if right_pixel < 10: black_point += 1 if black_point < 1: img.putpixel((x, y), 255) black_point = 0 img.show()
图像处理前后对比如下
文字识别
将处理后的图片就给谷歌的文字识别引擎就能完成识别
result = pytesseract.image_to_string(img) # 可能存在异常符号,用正则提取其中的数字 regex = '\d+' result = ''.join(re.findall(regex, result)) print(result)
识别结果如下
提交账号密码、验证码等信息
在处理完验证码之后,现在我们就可以向网站提交账号密码、验证码等登陆所需信息
driver.find_element_by_name('code').send_keys(result) driver.find_element_by_name('userName').send_keys('xxx') driver.find_element_by_name('password').send_keys('xxx') # 最后点击确定 driver.find_element_by_xpath("//div[@class='form-group login-input'][3]").click()
需要注意的是,二值法识别验证码成功率不是100%,因此需要考虑到验证码识别错误,需要单击图片更换验证码重新识别,可以将上述代码拆解成多个函数后,用如下循环框架试错
while True: try: ... break except: driver.find_element_by_id('valiCode').click()
关于“Python爬虫中破解验证码识别和弹窗处理”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
本文题目:Python爬虫中破解验证码识别和弹窗处理
标题来源:http://lswzjz.com/article/igdscp.html