如何理解python中的递归函数
递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。
专注于为中小企业提供网站设计、网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业留坝免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了1000+企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。计算理论可以证明递归的作用可以完全取代循环,因此在很多函数编程语言(如Scheme)中习惯用递归来实现循环。
计算机科学家尼克劳斯·维尔特如此描述递归:
递归的强大之处在于它允许用户用有限的语句描述无限的对象。因此,在计算机科学中,递归可以被用来描述无限步的运算,尽管描述运算的程序是有限的。
python 2 递归函数和其它语言,基本没有差别,只是不支持尾递归。无限递归最大值为固定的,但可以修改。
作者:黄哥
Python算法-爬楼梯与递归函数
可以看出来的是,该题可以用斐波那契数列解决。
楼梯一共有n层,每次只能走1层或者2层,而要走到最终的n层。不是从n-1或者就是n-2来的。
F(1) = 1
F(2) = 2
F(n) = F(n-1) + F(n-2) (n=3)
这是递归写法,但是会导致栈溢出。在计算机中,函数的调用是通过栈进行实现的,如果递归调用的次数过多,就会导致栈溢出。
针对这种情况就要使用方法二,改成非递归函数。
将递归进行改写,实现循环就不会导致栈溢出
利用递归函数求斐波那契值python版
首先我们要了解一下什么是递归。
递归法,递归法就是利用上一个或者上几个状态来求取当前状态的值(个人看法)。也可以说成函数自己调用自己的一种解决问题的策略。因此递归法通常是依托函数来实现的,递归函数总是会有一个出口,我们在解决递归问题时,只需要找出递归的关系式以及递归函数的出口(这两个可以说是递归函数的核心了)。下面我将在这里举求斐波那契值的例子带领着大家具体的实践一下递归法。
很显然递归函数的递推式是:fib(n) = fib(n-1)+fib(n-2)。
递归函数的出口是当n为1时返回1,当n为0时返回0。
最后递归函数的核心代码就可以写出了:
然后总的代码就是:
具体思路如下:
语句 return fib(n-1)+fib(n-2)的意思就是向前求斐波那契值,直到n-1=1,n-2=0
因为只有第1个和第0个斐波那契值是确定的
例:
当n=3时
第一次调用函数fib会执行第三条语句(因为n1)这样求回返回fib(2)+fib(1)
第二次调用函数时,因为21所有会返回fib(1)+fib(0);因为1不大于1,所以调用函数时
会执行第二条语句返回1值。
第三次调用函数,会执行第一和第二条语句,依次返回0和1从而求得fib(2)
fib(3)=fib(2)+fib(1)
fib(2)=fib(1)+fib(0)
即fib(3)=fib(1)+fib(0)+fib(1)=2*fib(1)+fib(0)
python递归函数
def Sum(m): #函数返回两个值:递归次数,所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5
Python 递归函数基例
所谓基例就是不需要递归就能求解的,一般来说是问题的最小规模下的解。
例如:斐波那契数列递归,f(n)
=
f(n-1)
+
f(n-2),基例是1和2,f(1)和f(2)结果都是1
再比如:汉诺塔递归,基例就是1个盘子的情况,只需移动一次,无需递归
递归必须有基例,否则就是无法退出的递归,不能求解。
当前标题:python用递归函数 python用递归函数求1到100的和
文章起源:http://lswzjz.com/article/hjichg.html