【转载】Python实现信号滤波(基于scipy)
利用Python scipy.signal.filtfilt() 实现信号滤波
坚守“ 做人真诚 · 做事靠谱 · 口碑至上 · 高效敬业 ”的价值观,专业网站建设服务10余年为成都成都效果图设计小微创业公司专业提供企业网站制作营销网站建设商城网站建设手机网站建设小程序网站建设网站改版,从内容策划、视觉设计、底层架构、网页布局、功能开发迭代于一体的高端网站建设服务。
Required input defintions are as follows;
time: Time between samples
band: The bandwidth around the centerline freqency that you wish to filter
freq: The centerline frequency to be filtered
ripple: The maximum passband ripple that is allowed in db
order: The filter order. For FIR notch filters this is best set to 2 or 3, IIR filters are best suited for high values of order. This algorithm is hard coded to FIR filters
filter_type: 'butter', 'bessel', 'cheby1', 'cheby2', 'ellip'
data: the data to be filtered
用python设计FIR陷波滤波器
如何用python实现图像的一维高斯滤波器
如何用python实现图像的一维高斯滤波器
现在把卷积模板中的值换一下,不是全1了,换成一组符合高斯分布的数值放在模板里面,比如这时中间的数值最大,往两边走越来越小,构造一个小的高斯包。实现的函数为cv2.GaussianBlur()。对于高斯模板,我们需要制定的是高斯核的高和宽(奇数),沿x与y方向的标准差(如果只给x,y=x,如果都给0,那么函数会自己计算)。高斯核可以有效的出去图像的高斯噪声。当然也可以自己构造高斯核,相关函数:cv2.GaussianKernel().
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread(‘flower.jpg‘,0) #直接读为灰度图像
for i in range(2000): #添加点噪声
temp_x = np.random.randint(0,img.shape[0])
temp_y = np.random.randint(0,img.shape[1])
img[temp_x][temp_y] = 255
blur = cv2.GaussianBlur(img,(5,5),0)
plt.subplot(1,2,1),plt.imshow(img,‘gray‘)#默认彩色,另一种彩色bgr
plt.subplot(1,2,2),plt.imshow(blur,‘gray‘)
python如何实现类似matlab的小波滤波?
T=wpdec(y,5,'db40');
%信号y进行波包解层数5T波树plot看
a10=wprcoef(T,[1,0]);
%a10节点[1,0]进行重构信号貌似没层重构说吧能某层某节点进行重构节点编号波树
%以下为滤波程序(主要调节参数c的大小)
c=10;
wn=0.1;
fs=50000; %采样频率;
b=fir1(c,wn/(fs/2),hamming(c+1));
y1=filtfilt(b,1,y);%对y滤波。
滤波方法及python实现
对滤波的 总结 : 对特定频率进行有效提取,并对提取部分进行特定的处理(增益,衰减,滤除)的动作被叫做滤波。
最常用的滤波器类型有三种: 通过式(Pass),搁架式(Shelving)和参量式(Parametric)。 滤波器都有一个叫 参考频率(Reference Frequency)的东西 ,在不同类型的滤波器中,具体的叫法会有所不同。
通过式滤波器可以让参考频率一侧的频率成分完全通过该滤波器,同时对另一侧的频率成分做线性的衰减,就是,一边让通过,一边逐渐被滤除。在信号学中,通过的区域被称为通带,滤除的区域被叫做阻带,在通过式滤波器中,参考频率通常被称为截止频率。
高通滤波器(high-pass filters):让截止频率后的高频区域通过,另一侧滤除,低通滤波器(low-pass filters):让截止频率前的低频区域通过,另一侧滤除,通
以下是高通滤波器与低通滤波器的核心参数:
截止频率(Cut-off frequency) :决定了通带(通过的频率部分)与阻带(阻止的频率部分)的分界曲线,截止频率的位置并非是在曲线开始弯曲的那个点,而是在-3dB的位置。以图2左侧的高通滤波器为例,截止频率点之上的部分频率并没有全部被通过,而是有个曲线,在曲线回归平直后其频率才被完全通过。至于为什么要将-3dB的位置设为截止频率,是因为-3dB对于滤波器的设计而言是个非常重要的位置,如果设为其他位置,则会让通过式滤波器的设计变得尤为复杂。
斜率(Slope) :表示的是通带与阻带的分界曲线的倾斜程度,也就是说斜率决定了分界曲线是偏向平缓的,还是偏向垂直的,斜率越大(更陡峭),人工处理的痕迹就越明显。斜率的单位为dB/oct,中文称为分贝每倍频程。虽然绕口,但其实很简单,如6dB/oct,意思为一个倍频程的距离会产生6dB的衰减,数字滤波器常见的斜率选择有6dB/oct,12dB/oct,18dB/oct,24dB/oct,30dB/oct等等(图3)。
scipy.signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)
scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')
这里假设采样频率为1000hz,信号本身最大的频率为500hz,要滤除10hz以下和400hz以上频率成分,即截至频率为10hz和400hz,则wn1=2*10/1000=0.02,wn2=2*400/1000=0.8。Wn=[0.02,0.8]
标题名称:python滤波器函数 python滤波器信号处理
转载来于:http://lswzjz.com/article/hidsoj.html