java中svm_scale怎么用?
public class TestScale {
十年的双柏网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整双柏建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“双柏网站设计”,“双柏网站推广”以来,每个客户项目都认真落实执行。
public static void main(String[] args) throws IOException {
String reafile = " "; // 文件路径
svm_scale svms = new svm_scale();
String[] srg = { reafile };//在这可以添加相关的系数"-l","0","-u","1","-s".以及要保存的scale参数文件
svms.main(srg);
}
}
手撕SVM(公式推导+代码实现)(三)
前面我们进行了很多的理论性研究,下面我们开始用代码进行实现。
这个数据集显然线性可分。
[-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
-1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
1.0,
1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
-1.0,
1.0,
1.0,
-1.0,
-1.0,
1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
-1.0,
-1.0,
1.0,
1.0,
1.0,
-1.0,
1.0,
1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
1.0,
-1.0,
1.0,
1.0,
1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0]
可以看出来,这里使用的类别标签是-1和1
SMO算法的伪代码:
L==H
第0次迭代 样本:1, alpha优化次数:1
第0次迭代 样本:3, alpha优化次数:2
第0次迭代 样本:5, alpha优化次数:3
L==H
第0次迭代 样本:8, alpha优化次数:4
L==H
j not moving enough
j not moving enough
L==H
L==H
j not moving enough
L==H
第0次迭代 样本:30, alpha优化次数:5
第0次迭代 样本:31, alpha优化次数:6
L==H
L==H
第0次迭代 样本:54, alpha优化次数:7
L==H
L==H
第0次迭代 样本:71, alpha优化次数:8
L==H
L==H
L==H
第0次迭代 样本:79, alpha优化次数:9
L==H
第0次迭代 样本:92, alpha优化次数:10
j not moving enough
L==H
迭代次数:0
第0次迭代 样本:1, alpha优化次数:1
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
L==H
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
j not moving enough
L==H
L==H
j not moving enough
j not moving enough
第0次迭代 样本:37, alpha优化次数:2
第0次迭代 样本:39, alpha优化次数:3
第0次迭代 样本:52, alpha优化次数:4
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
第0次迭代 样本:71, alpha优化次数:5
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
迭代次数:0
j not moving enough
j not moving enough
j not moving enough
第0次迭代 样本:8, alpha优化次数:1
L==H
j not moving enough
第0次迭代 样本:23, alpha优化次数:2
L==H
j not moving enough
j not moving enough
L==H
j not moving enough
j not moving enough
j not moving enough
第0次迭代 样本:39, alpha优化次数:3
L==H
j not moving enough
第0次迭代 样本:52, alpha优化次数:4
j not moving enough
第0次迭代 样本:55, alpha优化次数:5
L==H
L==H
L==H
L==H
L==H
j not moving enough
第0次迭代 样本:79, alpha优化次数:6
第0次迭代 样本:92, alpha优化次数:7
迭代次数:0
j not moving enough
L==H
j not moving enough
j not moving enough
L==H
j not moving enough
第0次迭代 样本:23, alpha优化次数:1
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
L==H
第0次迭代 样本:51, alpha优化次数:2
j not moving enough
j not moving enough
j not moving enough
j not moving enough
L==H
第0次迭代 样本:69, alpha优化次数:3
L==H
j not moving enough
第0次迭代 样本:94, alpha优化次数:4
j not moving enough
j not moving enough
迭代次数:0
j not moving enough
j not moving enough
j not moving enough
j not moving enough
j not moving enough
...
迭代次数:497
j not moving enough
j not moving enough
j not moving enough
迭代次数:498
j not moving enough
j not moving enough
j not moving enough
迭代次数:499
j not moving enough
j not moving enough
j not moving enough
迭代次数:500
如何调用libsvm 的java 库函数
第一步:下载java版libsvm3.12,解压。
第二步:打开java文件夹
第三步:建立项目,引用lib.svm包
第五步:把第二步中的文件夹中四个文件复制到一个自定义的包中
第六步:写程序调用,代码如下,贴出来供大家学习,有不对的地方,欢迎拍砖。
import java.io.IOException;
import libsvm.svm;
import libsvm.svm_model;
public class SVMTest {
public static void main(String[] args) throws IOException {
svm_train svmt = new svm_train();
svm_predict svmp = new svm_predict();
String[] argvTrain = {
"C:\\Users\\baolong\\Desktop\\KDD\\other\\svm\\train\\TR1.data",// 训练文件
"C:\\Users\\baolong\\Desktop\\KDD\\other\\svm\\model\\MO1.model"// 模型文件
};
String[] argvPredict = {
"C:\\Users\\baolong\\Desktop\\KDD\\other\\svm\\predict\\PR1.data",// 预测文件
"C:\\Users\\baolong\\Desktop\\KDD\\other\\svm\\model\\MO1.model", // 模型文件
"C:\\Users\\baolong\\Desktop\\KDD\\other\\svm\\result\\RE1.out" // 预测结果文件
};
try {
svmt.main(argvTrain);
svmp.main(argvPredict);
} catch (IOException e) {
e.printStackTrace();
}
double[] record = { -1, 12, 12, 78 };
libsvm.svm_model model = svm
.svm_load_model("C:\\Users\\baolong\\Desktop\\KDD\\other\\svm\\model\\MO1.model");
System.out.println(svmp.predictPerRecord(record, model));
}
}
本文名称:svm代码java svm代码实现
链接分享:http://lswzjz.com/article/hejhhs.html