RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
nosql管理工具,nosql数据库技术

有没有一款同时支持SQL和NoSql的数据库管理工具

同时支持SQL和NoSql的数据库管理工具,之前用RazorSQL,但是RazorSQL对中文的支持不太友好

创新互联公司专业为企业提供新余网站建设、新余做网站、新余网站设计、新余网站制作等企业网站建设、网页设计与制作、新余企业网站模板建站服务,10年新余做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

aqua data studio ,绝对满足你的要求,巴特,它要米米,而且很贵。。。

如何玩转NoSQL数据库

何玩转 NoSQL数据库作者:IT专家中国 Weather公司CIO Bryson Koehler整理MongoDBRiakCassandra等NoSQL数据库特性指其重要特性NoSQL限制住 Weather公司致力于气报告气预报业务其并缺乏数据缺乏数据管理工具需要三种同NoSQL数据库 近我向Weather 公司CIO Bryson Koehler提疑问除公司CIO,Bryson Koehler其业务单元孵化者,包括Weather ChannelWeatherFXWeather UndergroundIntellicast等Weather公司每获取处理着约二0万亿字节数据外提供前全球气状况并航空公司紧中国服务货运商公用事业保险及线气中国站气应用程序用户提供气预报服务每需求增加数十亿气数据请求并且预期响应间要一0毫秒左右 RiakWeather 公司台NoSQL数据库服务于公司事务性存储公用中国络(SUN)数据获取平台运行亚马逊中国络服务(AWS)用区域并每一5频率捕获超二0亿气象数据信息所Riak具明确处理规模该公司使用Cassandra及新近添加MongoDB数据库Weather中国 IOSAndroid移应用程序服务 Weather 公司使用同产品Koehler解释说同工具同优势 Cassandra服务于Weather 公司及全球消费者使用第三气应用API数据:我数据发平台每秒处理数十万事务我发现Cassandra用于全球发数据棒解决案并且[数据库]读取面体现高用性 本质全球各消费者所使用数据服务包括Weather 公司第三气应用程序 MongoDB提供Weather中国中国站移应用程序间层缓存功能:离我核API我没全部Weather中国内容所MongoDB容器发站Weather中国及AndroidiOS移应用程序服务Mongo处些处基于其内建JSON格式及灵性 Riak用于消费气象数据观测包括自世界各图片视频等:我喜Riak其优秀数据摄取能力且种全球布式式实现于全球布式平台获取数据入站式数据库真靠选择 我曾听说DatastaxBashoCouchbase高管贬低MongoDB扩展性MongoDB指向规模部署Facebook超二00万台移设备应用程序提供支持eHarmony公司MongDB每处理着数十亿潜比赛预约据Koehle所述MongoDBWeather中国Weather中国移应用程序处理着每十亿交易毫疑问通配置部署Mongo处理批量交易数据 尽管Koehler承认乐于看MongoDB继续使全球集群位置[功能]更加缝化且易于使用 些属于全球性布式集群复制负载平衡CassandraRiak众所周知功能 规模讨论角度看少公司达Weather公司经营规模易于发架构灵性JSON数据处理使MongoDB世界流行NoSQL数据库微软IBM都进行MongoDB模仿微软Azure DocumentDBIBM CloudantCassandraRiak Weather公司三NoSQL标准降低至两程巩固Koehler说公司没准备做 由于我构造由许同数据解决案组中国状结构我目前环境已于复杂说我希望给团队些自由空间让我解所选择利弊看些整合 候迁移件难事关于NoSQL数据库重要事情困其 Koehler说架构编码确数据库迁移另并难随着模式自由及数据转存技术发展论前者key-value存储或其形式转储数据都十容易 特定产品进程自定义编码复杂存储程已经复返Koehler说关于结构化编码确需要考虑?做避免特殊供应商提供工具功能能让身陷其举亚马逊中国络服务(AWS)消息服务例 必让服务云运行解释说部署自RabbitMQ环境陷于其所原先部署AWS 应用程序转部署谷歌计算云服务论数据平台存储环境或云计算环境都要别让自局限仅由供应商提供范围空间内 转

目前哪些NoSQL数据库应用广泛,各有什么特点

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

它们击碎了性能瓶颈。

NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。

“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。

没有过多的操作。

虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。

Bootstrap支持

因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

优点:

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

主要应用:

Apache HBase

这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。

Apache Storm

用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。

Apache Spark

该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。

Apache Hadoop

该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。

Apache Drill

你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。

Apache Sqoop

也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。

Apache Giraph

这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。

Cloudera Impala

Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。

Gephi

它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。

MongoDB

这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。

十大顶尖公司:

Amazon Web Services

Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。

Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。

Cloudera

Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。

Hortonworks

和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。

IBM

当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”

Intel

和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。

MapR Technologies

MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。

10个顶级Mongodb GUI工具,以图形方式管理数据库

MongoDB是一个面向文档的数据库,属于NoSQL数据库,它使用类似JSON的文档和schemata。

MongoDB的默认接口是(CLI)命令行,新用户很难像专业人员那样处理数据库。因此,有一些MongoDB管理工具来提供GUI界面以提高生产力。就像phpmyadmin为MySQL/MariaDB数据库提供基于HTTP网络的GUI界面一样。但是,此处包含的所有工具都不是基于HTTP的,只有少数工具为MongoDB提供Web界面。以下是使用GUI的比较流行的MongoDB管理工具列表:

要从具有图形用户界面的MongoDB开始,MongoDB是最好的方法之一。MongoDB Compass Community由MongoDB开发人员开发,这意味着更高的可靠性和兼容性。它为MongoDB提供GUI mongodb工具,以 探索 数据库交互;具有完整的CRUD功能并提供可视方式。借助内置模式可视化,用户可以分析文档并显示丰富的结构。为了监控服务器的负载,它提供了数据库操作的实时统计信息。就像MongoDB一样,Compass也有两个版本,一个是Enterprise(付费),社区可以免费使用。适用于Linux,Mac或Windows。

NoSQLBooster是MongoDB CLI界面中非常流行的GUI工具。它正式名称为MongoBooster。NoSQLBooster是一个跨平台,它带有一堆mongodb工具来管理数据库和监控服务器。这个Mongodb工具包括服务器监控工具,Visual Explain Plan,查询构建器,SQL查询,ES2017语法支持等等......它有免费,个人和商业版本,当然,免费版本有一些功能限制。NoSQLBooster也可用于Windows,MacOS和Linux。

ClusterControl是另一个MongoDB工具,具有管理数据库基础结构的GUI。它还有两个版本 - 社区和企业版。不用说,ClusterControl社区版可以免费使用,而企业则是付费的。它不仅限于MongoDB,还支持MySQL,MySQL复制,MySQL NDB集群,Galera集群,MariaDB,PostgreSQL,TimescaleDB,Docker和ProxySQL。

ClusterControl为数据库基础架构提供全自动安全性,该基础架构具有单个图形用户界面,可操作和自动化MongoDB和MySQL数据库环境。它可通过YUM/APT提供回购,适用于Linux平台(RedHat,Centos,Ubuntu或Debian)。

Nosqlclient是一个免费的开源MongoDB管理工具,基于Web的GUI意味着不再需要命令行来管理数据库。我们可以使用Nosqlclient在MongoDB中插入,删除或更新数据,而无需使用查询。它可作为桌面应用程序,Docker和Web应用程序使用。Web使用HTTP为MOngoDB提供基于浏览器的界面。

Robo 3T由MongoDB客户端Studio 3T的开发人员维护和提供。以前,Robo 3T被称为Robomongo。它也是适用于Windows,MacOS和Linux的跨平台MongoDB GUI管理工具。它具有相同的引擎和环境,是MongoDB shell(3.2)的一部分。

上面提到的Robomong被3T收购并更名为Robot 3T;现在是Studio 3T的一部分。那么,Studio 3T是什么?与其他提到的MongoDB管理GUI工具一样,Studio 3T也是一个基于GUI的工具,用于管理数据库,但在付费类别中。但是,此工具的30天免费试用版允许用户在投入资金之前使用并了解其功能。与免费和开源Robot 3T相比,Studio 3T具有更多功能并提供企业支持。与Robo 3T相同,它也适用于Windows,Linux(Ubuntu和CentOS)和MacOS。

Mongo Management Studio是一个用于数据库管理的免费MongoDB GUI工具。它轻巧,界面清晰,易于开发基于MongoDB的项目。它使用nodeJs,Electron框架,MongoDB和AngularJs开发。MMS与MongoDB 3.0/3.2/3.4兼容。

与上述所有MongoDB管理工具一样,用户可以轻松安装它,但免费版仅适用于Windows;而企业和个人则适用于Linux,Windows和MacOS。企业版(Web服务器)支持MongoDB Web界面HTTP GUI,这意味着我们可以在主服务器上安装,之后可以在本地或远程使用浏览器的任何系统上访问。但是,个人版和免费版只能在已安装它们的本地系统上使用。

它是面向关系,NoSQL和云平台的数据库开发人员的通用集成开发环境(IDE)。因此,支持各种数据库来开发,访问,管理和可视化分析数据。

对于MongoDB,Aqua Data Studio使用具有管理和数据库查询功能的图形用户界面作为管理工具。Aqua Data studio的Visual界面允许用户浏览和修改数据库结构,包括模式对象和集合,以及维护数据库安全性。

它提供了一个MongoDB数据库工具包,包括各种工具,如Visual Analytics,MongoSQL查询参考,MongoJS查询分析器,MongoShell MongoShell,FluidShell,查询和分析工具,网格和数据透视图,表数据编辑器,导入和导出工具,实体关系建模;Visual Query Builder;比较工具:架构比较,文件比较;SQL 历史 记录,Open API脚本环境,集成安全Shell(SSH)和版本控制:Subversion(SVN),Git,CVS,Perforce。

MongoJS查询分析器Javascript编辑器允许执行JavaScript命令并支持自动完成和语法突出显示。结果可以在树层次结构,网格结果和文本中看到。

作为付费产品,Aqua Data Studio的试用版提供14天,具有所有企业功能。所以,如果你正在寻找一些付费产品,那么你可以在花钱之前免费试用它。它适用于Windows,Linux和MacOS。

这听起来像phpMyAdmin工具。但是,phpMoAdmin也是PHP编写的但是可用于MongoDB。它基于Vork PHP框架。很轻巧,易于安装。它只有115KB的moadmin.php文件,用户可以放在网站的任何地方开始工作。

它是一个跨平台的MongoDB管理工具,在Open Source许可下发布,使用Electron框架和Angular JS构建。可在GitHub上找到。

以上谈到了Windows,Linux和MacOS MongoDB管理客户端,所以那些正在寻找智能手机和平板电脑的用户mongoDB管理可以试试Mongolime。它为MongoDB移动客户端提供了轻松连接和访问MongoDB服务器的功能。它具有内置的SSH隧道,可以通过SSL轻松验证和连接远程服务器。MongoLime是免费增值MongoDB客户端应用程序,支持iOS和Android平台。

使用Node.js,Express和Bootstrap3编写的基于Web的MongoDB管理界面。它允许连接多个数据库;查看/添加/删除数据库,集合和文档;预览音频/视频/图像资产;GridFS支持 - 添加/获取/删除难以置信的大文件;在文档中使用BSON数据类型,Mobile / Responsive - Bootstrap以及更多功能。


新闻名称:nosql管理工具,nosql数据库技术
浏览路径:http://lswzjz.com/article/hdochd.html