CC攻击的防御办法?
对于CC攻击,其防御必须采用多种方法,而这些方法本质上也是在提高服务器的并发能力。
成都创新互联2013年开创至今,先为汕城等服务建站,汕城等地企业,进行企业商务咨询服务。为汕城企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
1、服务器垂直扩展和水平扩容
资金允许的情况下,这是最简单的一种方法,本质上讲,这个方法并不是针对CC攻击的,而是提升服务本身处理并发的能力,但确实提升了对CC攻击的承载能力。垂直扩展:是指增加每台服务器的硬件能力,如升级CPU、增加内存、升级SSD固态硬盘等。水平扩容:是指通过增加提供服务的服务器来提升承载力。上述扩展和扩容可以在服务的各个层级进行,包括:应用服务器、数据库服务器和缓存服务器等等。
2、数据缓存
对于服务中具备高度共性,多用户可重用,或单用户多次可重用的数据,一旦从数据库中检索出,或通过计算得出后,最好将其放在缓存中,后续请求均可直接从缓存中取得数据,减轻数据库的检索压力和应用服务器的计算压力,并且能够快速返回结果并释放进程,从而也能缓解服务器的内存压力。要注意的是,缓存不要使用文件形式,可以使用redis、mem-cached等基于内存的nosql缓存服务,并且与应用服务器分离,单独部署在局域网内。局域网内的网络IO肯定比起磁盘IO要高。为了不使局域网成为瓶颈,千兆网络也是有必要的。
3、页面静态化
与数据缓存一样,页面数据本质上也属于数据,常见的手段是生成静态化的html页面文件,利用客户端浏览器的缓存功能或者服务端的缓存服务,以及CDN节点的缓冲服务,均可以降低服务器端的数据检索和计算压力,快速响应结果并释放连接进程。
4、用户级别的调用频率限制
不管服务是有登陆态还是没登陆态,基于session等方式都可以为客户端分配唯一的识别ID,服务端可以将sid存到缓存中。当客户端请求服务时,如果没有带SID,则由服务端快速分配一个并返回。可以的话,本次请求可以不返回数据,或者将分配SID独立出业务服务。当客户端请求时带了合法SID,便可以依据SID对客户端进行频率限制。而对于SID非法的请求,则直接拒绝服务。相比根据IP进行的频率限制,根据SID的频率限制更加精准可控,可最大程度地避免误杀情况。
5、IP限制
最后,IP限制依然可以结合上述规则一起使用,但是可以将其前置至)JCb层的防火墙或负载均衡器上去做,并且可以调大限制的阈值,防止恶意访问穿透到应用服务器上,造成应用服务器压力。
什么是New SQL?分析NewSQL是如何融合NoSQL和RDBMS两者的优势
NewSQL是对一类现代关系型数据库的统称,这类数据库对于一般的OLTP读写请求提供可横向扩展的性能,同时支持事务的ACID保证。这些系统既拥有NoSQL数据库的扩展性,又保持传统数据库的事务特性。NewSQL重新将“应用程序逻辑与数据操作逻辑应该分离”的理念带回到现代数据库的世界,这也验证了历史的发展总是呈现出螺旋上升的形式。
在21世纪00年代中,出现了许多数据仓库系统 (如 Vertica,Greeplum 和AsterData),这些以处理OLAP 请求为设计目标的系统并不在本文定义的NewSQL范围内。OLAP 数据库更关注针对海量数据的大型、复杂、只读的查询,查询时间可能持续秒级、分钟级甚至更长。
NoSQL的拥趸普遍认为阻碍传统数据库横向扩容、提高可用性的原因在于ACID保证和关系模型,因此NoSQL运动的核心就是放弃事务强一致性以及关系模型,拥抱最终一致性和其它数据模型 (如 key/value,graphs 和Documents)。
两个最著名的NoSQL数据库就是Google的BigTable和Amazon的Dynamo,由于二者都未开源,其它组织就开始推出类似的开源替代项目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些创业公司也加入到这场NoSQL运动中,它们不一定是受BigTable和Dynamo的启发,但都响应了NoSQL的哲学,其中最出名的就是MongoDB。
在21世纪00年代末,市面上已经有许多供用户选择的分布式数据库产品。使用NoSQL的优势在于应用开发者可以更关注应用逻辑本身,而非数据库的扩展性问题;但与此同时许多应用,如金融系统、订单处理系统,由于无法放弃事务的一致性要求被拒之门外。
一些组织,如Google,已经发现他们的许多工程师将过多的精力放在处理数据一致性上,这既暴露了数据库的抽象、又提高了代码的复杂度,这时候要么选择回到传统DBMS时代,用更高的机器配置纵向扩容,要么选择回到中间件时代,开发支持分布式事务的中间件。这两种方案成本都很高,于是NewSQL运动开始酝酿。
NewSQL数据库设计针对的读写事务有以下特点:
1、耗时短。
2、使用索引查询,涉及少量数据。
3、重复度高,通常使用相同的查询语句和不同的查询参考。
也有一些学者认为NewSQL系统是特指实现上使用Lock-free并发控制技术和share-nothing架构的数据库。所有我们认为是NewSQL的数据库系统确实都有这样的特点。
NoSQL-HDFS-基本概念
Hadoop
文件系统:文件系统是用来存储和管理文件,并且提供文件的查询、增加、删除等操作。
直观上的体验:在shell窗口输入 ls 命令,就可以看到当前目录下的文件夹、文件。
文件存储在哪里?硬盘
一台只有250G硬盘的电脑,如果需要存储500G的文件可以怎么办?先将电脑硬盘扩容至少250G,再将文件分割成多块,放到多块硬盘上储存。
通过 hdfs dfs -ls 命令可以查看分布式文件系统中的文件,就像本地的ls命令一样。
HDFS在客户端上提供了查询、新增和删除的指令,可以实现将分布在多台机器上的文件系统进行统一的管理。
在分布式文件系统中,一个大文件会被切分成块,分别存储到几台机器上。结合上文中提到的那个存储500G大文件的那个例子,这500G的文件会按照一定的大小被切分成若干块,然后分别存储在若干台机器上,然后提供统一的操作接口。
看到这里,不少人可能会觉得,分布式文件系统不过如此,很简单嘛。事实真的是这样的么?
潜在问题
假如我有一个1000台机器组成的分布式系统,一台机器每天出现故障的概率是0.1%,那么整个系统每天出现故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一个容错机制来保证发生差错时文件依然可以读出,这里暂时先不展开介绍。
如果要存储PB级或者EB级的数据,成千上万台机器组成的集群是很常见的,所以说分布式系统比单机系统要复杂得多呀。
这是一张HDFS的架构简图:
client通过nameNode了解数据在哪些DataNode上,从而发起查询。此外,不仅是查询文件,写入文件的时候也是先去请教NameNode,看看应该往哪个DateNode中去写。
为了某一份数据只写入到一个Datanode中,而这个Datanode因为某些原因出错无法读取的问题,需要通过冗余备份的方式来进行容错处理。因此,HDFS在写入一个数据块的时候,不会仅仅写入一个DataNode,而是会写入到多个DataNode中,这样,如果其中一个DataNode坏了,还可以从其余的DataNode中拿到数据,保证了数据不丢失。
实际上,每个数据块在HDFS上都会保存多份,保存在不同的DataNode上。这种是牺牲一定存储空间换取可靠性的做法。
接下来我们来看一下完整的文件写入的流程:
大文件要写入HDFS,client端根据配置将大文件分成固定大小的块,然后再上传到HDFS。
读取文件的流程:
1、client询问NameNode,我要读取某个路径下的文件,麻烦告诉我这个文件都在哪些DataNode上?
2、NameNode回复client,这个路径下的文件被切成了3块,分别在DataNode1、DataNode3和DataNode4上
3、client去找DataNode1、DataNode3和DataNode4,拿到3个文件块,通过stream读取并且整合起来
文件写入的流程:
1、client先将文件分块,然后询问NameNode,我要写入一个文件到某个路径下,文件有3块,应该怎么写?
2、NameNode回复client,可以分别写到DataNode1、DataNode2、DataNode3、DataNode4上,记住,每个块重复写3份,总共是9份
3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把数据写到他们上面
出于容错的考虑,每个数据块有3个备份,但是3个备份快都直接由client端直接写入势必会带来client端过重的写入压力,这个点是否有更好的解决方案呢?回忆一下mysql主备之间是通过binlog文件进行同步的,HDFS当然也可以借鉴这个思想,数据其实只需要写入到一个datanode上,然后由datanode之间相互进行备份同步,减少了client端的写入压力,那么至于是一个datanode写入成功即成功,还是需要所有的参与备份的datanode返回写入成功才算成功,是可靠性配置的策略,当然这个设置会影响到数据写入的吞吐率,我们可以看到可靠性和效率永远是“鱼和熊掌不可兼得”的。
潜在问题
NameNode确实会回放editlog,但是不是每次都从头回放,它会先加载一个fsimage,这个文件是之前某一个时刻整个NameNode的文件元数据的内存快照,然后再在这个基础上回放editlog,完成后,会清空editlog,再把当前文件元数据的内存状态写入fsimage,方便下一次加载。
这样,全量回放就变成了增量回放,但是如果NameNode长时间未重启过,editlog依然会比较大,恢复的时间依然比较长,这个问题怎么解呢?
SecondNameNode是一个NameNode内的定时任务线程,它会定期地将editlog写入fsimage,然后情况原来的editlog,从而保证editlog的文件大小维持在一定大小。
NameNode挂了, SecondNameNode并不能替代NameNode,所以如果集群中只有一个NameNode,它挂了,整个系统就挂了。hadoop2.x之前,整个集群只能有一个NameNode,是有可能发生单点故障的,所以hadoop1.x有本身的不稳定性。但是hadoop2.x之后,我们可以在集群中配置多个NameNode,就不会有这个问题了,但是配置多个NameNode,需要注意的地方就更多了,系统就更加复杂了。
俗话说“一山不容二虎”,两个NameNode只能有一个是活跃状态active,另一个是备份状态standby,我们看一下两个NameNode的架构图。
两个NameNode通过JournalNode实现同步editlog,保持状态一致可以相互替换。
因为active的NameNode挂了之后,standby的NameNode要马上接替它,所以它们的数据要时刻保持一致,在写入数据的时候,两个NameNode内存中都要记录数据的元信息,并保持一致。这个JournalNode就是用来在两个NameNode中同步数据的,并且standby NameNode实现了SecondNameNode的功能。
进行数据同步操作的过程如下:
active NameNode有操作之后,它的editlog会被记录到JournalNode中,standby NameNode会从JournalNode中读取到变化并进行同步,同时standby NameNode会监听记录的变化。这样做的话就是实时同步了,并且standby NameNode就实现了SecondNameNode的功能。
优点:
缺点:
分库分表技术及技术方案
一、分库分表的必要性
分库分表技术的使用,主要是数据库产生了瓶颈,如单库的并发访问或单表的查询都超出了阈值。对系统使用造成一定的影响,不得已而产生的技术。
通过分库分表技术来解决此类问题,但正因为使用此技术,会产生ACID一系列的问题,各类中间件解决此类问题各有各的优势。
提示:如场景无必要,千万不要使用分库分表。
二、分库分表的思路
1、垂直区分
垂直分库:从业务角度,一个库分成多个库,如把订单和用户信息分成两个库来存储。这样的好处就是可以微服务了。每块的业务单独部署,互不影响,通过接口去调用。
垂直分表:把大表分成多个小表,如热点数据和非热点数据分开,提高查询速度。
2、水平区分
水平分表:同一业务如数据量大了以后,根据一定的规则分为不同的表进行存储。
水平分库:如订单分成多个库存储,分解服务器压力。
以上一般来说,垂直分库和水平分表用的会多些。
三、分库分表的原理分析
分库分表常用的方案:Hash取模方案和range范围方案;
路由算法为最主要的算法,指得是把路由的Key按照指定的算法进行存放;
1、Hash取模方案
根据取余分配到不同的表里。要根据实际情况确认模的大小。此方案由于平均分配,不存在热点问题,但数据迁移很复杂。
2、Range范围方案
range根据范围进行划分,如日期,大小。此方案不存在数据迁移,但存在热点问题。
四、分库分表的技术选型
1、技术选型
解决方案主要分为4种:MySQL的分区技术、NoSql、NewSQL、MySQL的分库分表。
(1)mysql分区技术:把一张表存放在不同存储文件。由于无法负载,使用较少。
(2)NoSQL(如MongoDB):如是订单等比较重要数据,强关联关系,需约束一致性,不太适应。
(3)NewSql(具有NoSQL对海量数据的存储管理能力,还保持了传统数据库支持ACID和SQL等特性):如TiDB可满足需求。
(4)MySQL的分库分表:如使用mysql,此种方案为主流方式。
2、中间件
解决此类问题的中间件主要为:Proxy模式、Client模式。
(1)Proxy模式
(2)Client模式
把分库分表相关逻辑存放在客户端,一版客户端的应用会引用一个jar,然后再jar中处理SQL组合、数据库路由、执行结果合并等相关功能。
(3)中间件的比较
由于Client模式少了一层,运维方便,相对来说容易些。
五、分库分表的实践
根据容量(当前容量和增长量)评估分库或分表个数 - 选key(均匀)- 分表规则(hash或range等)- 执行(一般双写)- 扩容问题(尽量减少数据的移动)。
在这里我们选用中间件share-jdbc。
1、引入maven依赖
2、spring boot规则配置
行表达式标识符可以使用${...}或$-{...},但前者与Spring本身的属性文件占位符冲突,因此在Spring环境中使用行表达式标识符建议使用$-{...}。
3、创建DataSource
通过ShardingDataSourceFactory工厂和规则配置对象获取ShardingDataSource,ShardingDataSource实现自JDBC的标准接口DataSource。然后即可通过DataSource选择使用原生JDBC开发,或者使用JPA, MyBatis等ORM工具。
如何进行mysql的动态扩容和缩容
mysql在线扩容和缩容一般涉及到的内容,主要包括三个方面,1.在线也就意味着需要把增量的数据重新分布到新的拓扑结构中,我们一般称做增量复制,2.原有的数据需要一条不漏的扫出来重新分布到新的拓扑结构中,这个一般叫做全量复制,3.全量做完,增量正在同步,把应用的数据路由拓扑切到新的路由拓扑上来,并且做到无数据丢失,这个我们叫做停写切换。做好这三个方面的工作,能够达到的效果就是应用在最后切换数据分布拓扑的时刻,只要停写非常短的时间(秒级别)就能够做到无数据丢失的扩容和缩容。
增量同步一般有2种方式,一种是应用端或者数据库前端做trigger,记录变更数据的特征值log(比如pk,sharding key),然后异步复制到新的拓扑结构中。另外一种方式是通过分析mysql的binlog再进行不同数据拓扑的复制。两者本质上来说应该是一样的,后者可能更加简便,并且对应用无侵入,前者虽然也能够做到,实际实现或者推广和操作上都有不少阻力,最起码解析binlog方式是mysql一上去,更新的log已经天然存在与binlog中了。
增量同步的两种方式如果要考虑到同步的可伸缩性(也就是多台机器可以同时消费相同的变更日志),需要在原数据中添加数据的版本信息防止更新乱序,或者通过唯一键进行复制机器的sharding,也就是不同进程(线程)同时消费相同的更新日志,必须让同一条记录的更新落在同一个线程里面,如果还需要保证复制的事务,那么实现会非常复杂,一般不会去支持多线程下复制的事务。
全量复制,也就是扫描需要复制的表的数据进行重新分布,主要存在的问题是复制速度和对数据库的写入压力的矛盾,其实能够做到整个拓扑连数据库都全部换掉,来达到对正在使用数据库的0影响,这个是一种可行的方案,另外是分时段调整复制线程数,一般单线程复制对于数据库的影响不会很大,在凌晨再转换成多线程方式达到提速的目标。
扩容或者缩容在最后阶段如何切换,这个涉及到的问题主要是如何避免新更新进来以至于增量没完没了,方式有很多,最简单的方法就是停掉应用,一般时间只有几分钟是可以接受的。另外一种是逻辑停写,因为我们迁移的时候是有一个规则去重新散列数据,也就是如果新的规则和旧的规则两者算出来的结果不一致,那么这个数据就是需要被迁移的,如果在停写的时刻,向前端抛错即可。逻辑停写最大的好处就是避免PE的介入,并且配合动态的数据路由数据推送,可以完全避免重新发布达到扩容或者缩容,这个就是真正的在线扩容,停写不可避免(等待延迟的增量同步完成),但是不影响读。
数据扩容或者缩容,我们觉得不应该排入业务的开发日程中,而是由数据管理团队对应用透明地进行这种操作,最后介入的人员只是DBA而已。但是不像一些nosql一样按容量或者完全透明的split,数据库的sharding还是按照应用的数据特性(pk,user_id,gmt_create等等不同字段,自选策略)进行sharding,应用知道他们的某条数据具体存在哪个机器哪张表上,这个无论对于开发还是测试或者DBA都是一件不错的事情。
大数据常用哪些数据库
通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Access等等数据库,这些数据库支持复杂的SQL操作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。
大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写操作,从数据库是负责读操作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。
NoSQL数据库大致分为5种类型
1、列族数据库:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面简单介绍几个
(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存。
(2)HBase:Apache Hbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。
(3)Amazon SimpleDB:Amazon SimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项
(4)Apache Accumulo:Apache Accumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在Apache Hadoop、Zookeeper和Thrift技术之上。
(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。
(6)Azure Tables:Windows Azure Table Storage Service为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和Managed API访问。
2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个
(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。
(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。
(4)Oracle NoSQL Database:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。
(5)Oracle NoSQL Database:具备数据备份和分布式键值存储系统。
(6)Voldemort:具备数据备份和分布式键值存储系统。
(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。
3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个
(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。
(2)CounchDB:Apache CounchDB是一个使用JSON的文档数据库,使用Javascript做MapReduce查询,以及一个使用HTTP的API。
(3)Couchbase:NoSQL文档数据库基于JSON模型。
(4)RavenDB:RavenDB是一个基于.NET语言的面向文档数据库。
(5)MarkLogic:MarkLogic NoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。
4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个
(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。
(2)InfiniteGraph:一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。
(3)AllegroGraph:AllegroGraph是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS++和Prolog推理。
5、内存数据网格:Hazelcast、Oracle Coherence、Terracotta BigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个
(1)Hazelcast:Hazelcast CE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。
(2)Oracle Coherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。
(3)Terracotta BigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。
(4)GemFire:Vmware vFabric GemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。
(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer 及client/server 架构。
(6)GridGain:分布式、面向对象、基于内存、SQL+NoSQL键值数据库。支持ACID事务。
(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。
分享标题:nosql扩容,noSQL数据库
网站网址:http://lswzjz.com/article/hdicjc.html