这篇文章给大家分享的是有关Java数据结构与算法的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
十载的库尔勒网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都营销网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整库尔勒建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“库尔勒网站设计”,“库尔勒网站推广”以来,每个客户项目都认真落实执行。
第1章 数据结构与算法基础概述
1.1 数据结构和算法的重要性
算法是程序的灵魂,优秀的程序可以在海量数据计算时,依然保持高速计算
数据结构和算法的关系:
程序 = 数据结构 + 算法
数据结构是算法的基础, 换言之,想要学好算法,需要把数据结构学到位。
数据结构和算法学习大纲
1.2 数据结构概述
数据结构可以简单的理解为数据与数据之间所存在的一些关系,数据的结构分为数据的存储结构和数据的逻辑结构。
逻辑结构
集合结构:数据元素同属于一个集合,他们之间是并列关系,无其他的关系;可以理解为中学时期学习的集合,在一个范围之内,有很多的元素,元素间没有什么关系
线性结构:元素之间存在着一对一的关系;可以理解为每个学生对应着一个学号,学号与姓名就是线性结构
树形结构:元素之间存在着一对多的关系,可以简单理解为家庭族谱一样,一代接一代
图形结构:元素之间存在多对多的关系,每一个元素可能对应着多个元素,或被多个元素对应,网状图
存储结构
顺序存储结构:就是将数据进行连续的存储,我们可以将它比喻成学校食堂打饭排队一样,一个接着一个;
链式存储结构:不是按照顺序存储的,后一个进来的数只需要将他的地址告诉前一个节点,前一个节点中就存放了它后面那个数的地址,所以最后一个数的存储地址就是为null;可以将这种结构比喻成商场吃饭叫号,上面的号码比喻成是地址,你可以之后后面的地址是什么,上面的其他内容就是该节点的内容;
区别:
顺序存储的特点是查询快,插入或者删除慢
链式存储的特点是查询慢,插入或者删除快
1.3 算法概述
同一问题不同解决方法
通过时间和空间复杂度判断算法的优劣
算法没有最好的,只有最合适的,学习算法是为了积累学习思路,掌握学习思路,并不是为了解决某问题去记住某种算法;对于时间复杂度与空间复杂度,现在大多数开发情况下,我们都在使用以空间换时间,耗费更多的内存,来保证拥有更快的速度。
各排序算法复杂度及稳定性:
如何理解“大O记法”
对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为 3n^2 和 100n^2 属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n^2级。
时间复杂度
一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。算法中的语句执行次数称为语句频度或时间频度,记为T(n)
。n 称为问题的规模,当 n 不断变化时,时间频度T(n)
也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
一般情况下,算法中基本操作重复执行的次数是问题规模 n 的某个函数,用T(n)
表示,若有某个辅助函数f(n)
,使得当 n 趋近于无究大时,T(n)/f(n)
的极限值为不等于零的常数,则称f(n)
是T(n)
的同数量级函数。记作T(n)=O(f(n))
,称O(f(n))
为算法的渐进时间复杂度,简称时间复杂度。
有时候,算法中基本操作重复执行的次数还随问题的输入数据集不同而不同,如在冒泡排序中,输入数据有序而无序,结果是不一样的。此时,我们计算平均值。
时间复杂度基本计算规则:
基本操作,即只有常数项,认为其时间复杂度为O(1)
顺序结构,时间复杂度按加法进行计算
循环结构,时间复杂度按乘法进行计算
分支结构,时间复杂度取最大值
判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
常用时间复杂度:
注意
:经常将log2n(以2为底的对数)简写成logn
常见时间复杂度之间的关系:
所以时间消耗由小到大为:
O(1) < O(log n) < O(n) < O(nlog n) < O(n^2) < O(2^n) < O(n!) < O(n^n)
案例1:
count = 0; (1) for(i = 0;i <= n;i++) (2) for(j = 0;j <= n;j++) (3) count++; (4)
语句(1)执行1次
语句(2)执行n次
语句(3)执行n^2次
语句(4)执行n^2次
时间复杂度为:
T(n) = 1+n+n^2+n^2 = O(n^2)
案例2:
a = 1; (1) b = 2; (2) for(int i = 1;i <= n;i++) { (3) int s = a + b; (4) b = a; (5) a = s; (6) }
语句(1)、(2)执行1次
语句(3)执行n次
语句(4)、(5)、(6)执行n次
时间复杂度为:
T(n) = 1+1+4n = o(n)
案例3:
i = 1; (1)while(i
语句(1)的频度是1
设语句(2)的频度是
f(n)
,则2f(n)<=n;f(n)<=log2n
,取最大值f(n) = log2n
时间复杂度为:
T(n) = O(log2n)
空间复杂度
算法的空间复杂度计算公式:
S(n) = 0( f(n) )
,其中 n 为输入规模,f(n)
为语句关于 n 所占存储空间的函数一个算法在计算机存储器上所占用的存储空间,包括三个方面
存储算法本身所占用的存储空间
算法的输入输出数据所占用的存储空间
算法在运行过程中临时占用的存储空间
案例:指定的数组进行反转,并返回反转的内容
解法一:
public static int[] reverse1(int[] arr) { int n = arr.length; //申请4个字节 int temp; //申请4个字节 for (int start = 0, end = n - 1; start <= end; start++, end--) { temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; } return arr;}
空间复杂度为:
S(n) = 4+4 = O(8) = O(1)
解法二:
public static int[] reverse2(int[] arr) { int n = arr.length; //申请4个字节 int[] temp = new int[n]; //申请n*4个字节+数组自身头信息开销24个字节 for (int i = n - 1; i >= 0; i--) { temp[n - 1 - i] = arr[i]; } return temp;}
空间复杂度为:
S(n) = 4+4n+24 = O(n+28) = O(n)
根据大O推导法则,算法一的空间复杂度为0(1),算法二的空间复杂度为0(n),所以从空间占用的角度讲,算法一要优于算法二。
由于java中有内存垃圾回收机制,并且jvm对程序的内存占用也有优化(例如即时编译) , 我们无法精确的评估一个java程序的内存占用情况,但是了解了java的基本内存占用,使我们可以对java程序的内存占用情况进行估算。
由于现在的计算机设备内存一般都比较大,基本上个人计算机都是4G起步,大的可以达到32G ,所以内存占用一般情况下并不是我们算法的瓶颈,普通情况下直接说复杂度,默认为算法的时间复杂度。
但是,如果你做的程序是嵌入式开发,尤其是一些传感器设备上的内置程序,由于这些设备的内存很小, 一般为几kb,这个时候对算法的空间复杂度就有要求了,但是一般做java开发的,基本上都是服务器开发, 一般不存在这样的问题。
第2章 数组
2.1 数组概念
数组是一种线性表数据结构,它用一组连续的内存空间,来存储一组具有相同类型的数据。这里我们要抽取出三个跟数组相关的关键词:线性表,连续内存空间,相同数据类型;数组具有连续的内存空间,存储相同类型的数据,正是该特性使得数组具有一个特性:随机访问。但是有利有弊,这个特性虽然使得访问数组边得非常容易,但是也使得数组插入和删除操作会变得很低效,插入和删除数据后为了保证连续性,要做很多数据搬迁工作。
查找数组中的方法有两种:
线性查找:线性查找就是简单的查找数组中的元素
二分法查找:二分法查找要求目标数组必须是有序的。
2.2 无序数组
实现类:
public class MyArray { //声明一个数组 private long[] arr; //有效数据的长度 private int elements; //无参构造函数,默认长度为50 public MyArray(){ arr = new long[50]; } public MyArray(int maxsize){ arr = new long[maxsize]; } //添加数据 public void insert(long value){ arr[elements] = value; elements++; } //显示数据 public void display(){ System.out.print("["); for(int i = 0;i < elements;i++){ System.out.print(arr[i] + " "); } System.out.println("]"); } //根据下标查找数据 public long get(int index){ if(index >= elements || index < 0){ throw new ArrayIndexOutOfBoundsException(); }else{ return arr[index]; } } /** * 根据值查询 * @param value 需要被查询的值 * @return 被查询值的下标 */ public int search(int value){ //声明一个变量i用来记录该数据的下标值 int i ; for(i = 0;i < elements;i++){ if(value == arr[i]){ break; } } //如果查询到最后一个元素依然没有找到 if(i == elements){ return -1; }else{ return i; } } //根据下标删除数据 public void delete(int index){ if(index >= elements || index < 0){ throw new ArrayIndexOutOfBoundsException(); }else{ //删除该元素后,后面所有元素前移一位 for(int i = index; i < elements;i++){ arr[i] = arr[i+1]; } elements--; } } /** * 替换数据 * @param index 被替换的下标 * @param newvalue 新的数据 */ public void change(int index,int newvalue){ if(index >= elements || index < 0){ throw new ArrayIndexOutOfBoundsException(); }else{ arr[index] = newvalue; } } }
优点:插入快(时间复杂度为:
O(1)
)、如果知道下标,可以很快存储缺点:查询慢(时间复杂度为:
O(n)
)、删除慢2.3 有序数组
实现类:
public class MyOrderArray { private long[] arr; private int elements; public MyOrderArray(){ arr = new long[50]; } public MyOrderArray(int maxsize){ arr = new long[maxsize]; } //添加数据 public void insert(int value){ int i; for(i = 0;i < elements;i++){ if(arr[i] > value){ break; } } for(int j = elements;j > i;j--){ arr[j] = arr[j -1]; } arr[i] = value; elements++; } //删除数据 public void delete(int index){ if(index >=elements || index <0){ throw new ArrayIndexOutOfBoundsException(); }else{ for(int i = index;i < elements; i++){ arr[i] = arr[i+1]; } elements--; } } //修改数据 public void change(int index,int value){ if(index >= elements || index < 0){ throw new IndexOutOfBoundsException(); }else{ arr[index] = value; } } //根据下标查询数据 public long get(int index){ if(index >= elements || index < 0){ throw new IndexOutOfBoundsException(); }else{ return arr[index]; } } //展示数据 public void display(){ System.out.print("["); for(int i = 0; i < elements;i++){ System.out.print(arr[i] + " "); } System.out.println("]"); } //二分法查找数据 public int binarySearch(long value){ //声明三个指针分别指向数组的头,尾,中间 int low = 0; int pow = elements; int middle = 0; while(true){ middle = (low + pow) / 2; //如果中指针所指的值等于带查询数 if(arr[middle] == value){ return middle; }else if(low > pow){ return -1; }else{ if(arr[middle] > value){ //待查询的数在左边,右指针重新改变指向 pow = middle-1; }else{ //带查询的数在右边,左指针重新改变指向 low = middle +1; } } } }}
优点:查询快(时间复杂度为:
O(logn)
)缺点:增删慢(时间复杂度为:
O(n)
)第三章 栈
3.1 栈概念
栈(stack),有些地方称为堆栈,是一种容器,可存入数据元素、访问元素、删除元素,它的特点在于只能允许在容器的一端(称为栈顶端指标,英语:top)进行加入数据(英语:push)和输出数据(英语:pop)的运算。没有了位置概念,保证任何时候可以访问、删除的元素都是此前最后存入的那个元素,确定了一种默认的访问顺序。
由于栈数据结构只允许在一端进行操作,因而按照后进先出的原理运作。
栈可以用顺序表实现,也可以用链表实现。
3.2 栈的操作
Stack() 创建一个新的空栈
push(element) 添加一个新的元素element到栈顶
pop() 取出栈顶元素
peek() 返回栈顶元素
is_empty() 判断栈是否为空
size() 返回栈的元素个数
实现类:
package mystack;public class MyStack { //栈的底层使用数组来存储数据 //private int[] elements; int[] elements; //测试时使用 public MyStack() { elements = new int[0]; } //添加元素 public void push(int element) { //创建一个新的数组 int[] newArr = new int[elements.length + 1]; //把原数组中的元素复制到新数组中 for (int i = 0; i < elements.length; i++) { newArr[i] = elements[i]; } //把添加的元素放入新数组中 newArr[elements.length] = element; //使用新数组替换旧数组 elements = newArr; } //取出栈顶元素 public int pop() { //当栈中没有元素 if (is_empty()) { throw new RuntimeException("栈空"); } //取出数组的最后一个元素 int element = elements[elements.length - 1]; //创建一个新数组 int[] newArr = new int[elements.length - 1]; //原数组中除了最后一个元素其他元素放入新数组 for (int i = 0; i < elements.length - 1; i++) { newArr[i] = elements[i]; } elements = newArr; return element; } //查看栈顶元素 public int peek() { return elements[elements.length - 1]; } //判断栈是否为空 public boolean is_empty() { return elements.length == 0; } //查看栈的元素个数 public int size() { return elements.length; }}测试类:
package mystack;public class Demo { public static void main(String[] args) { MyStack ms = new MyStack(); //添加元素 ms.push(9); ms.push(8); ms.push(7); //取出栈顶元素// System.out.println(ms.pop()); //7// System.out.println(ms.pop()); //8// System.out.println(ms.pop()); //9 //查看栈顶元素 System.out.println(ms.peek()); //7 System.out.println(ms.peek()); //7 //查看栈中元素个数 System.out.println(ms.size()); //3 }}第4章 队列
4.1 队列概念
队列(Queue)是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。
队列是一种先进先出的(First In First Out)的线性表,简称FIFO。允许插入的一端为队尾,允许删除的一端为队头。队列不允许在中间部位进行操作!假设队列是q=(a1,a2,……,an),那么a1就是队头元素,而an是队尾元素。这样我们就可以删除时,总是从a1开始,而插入时,总是在队列最后。这也比较符合我们通常生活中的习惯,排在第一个的优先出列,最后来的当然排在队伍最后。
同栈一样,队列也可以用顺序表或者链表实现。
4.2 队列的操作
Queue() 创建一个空的队列
enqueue(element) 往队列中添加一个element元素
dequeue() 从队列头部删除一个元素
is_empty() 判断一个队列是否为空
size() 返回队列的大小
实现类:
public class MyQueue { int[] elements; public MyQueue() { elements = new int[0]; } //入队 public void enqueue(int element) { //创建一个新的数组 int[] newArr = new int[elements.length + 1]; //把原数组中的元素复制到新数组中 for (int i = 0; i < elements.length; i++) { newArr[i] = elements[i]; } //把添加的元素放入新数组中 newArr[elements.length] = element; //使用新数组替换旧数组 elements = newArr; } //出队 public int dequeue() { if (isEmpty()) { throw new RuntimeException("队空,无数据"); } //把数组中第1个元素取出来 int element = elements[0]; //创建一个新数组 int[] newArr = new int[elements.length - 1]; //把原数组除了第一个数据,其他存入新数组 for (int i = 0; i < elements.length; i++) { newArr[i] = elements[i + 1]; } //新数组替换旧数组 elements = newArr; return element; } //判断是否队空 public boolean isEmpty() { return elements.length==0; } //获取队列长度 public int size() { return elements.length; }}测试类:
public class Demo { public static void main(String[] args) { MyQueue mq = new MyQueue(); //入队 mq.enqueue(1); mq.enqueue(2); mq.enqueue(3); //出队 System.out.println(mq.dequeue()); //1 System.out.println(mq.dequeue()); //2 System.out.println(mq.dequeue()); //3 }}第5章 链表
5.1 单链表
单链表概念
单链表也叫单向链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指向一个空值。
表元素域data用来存放具体的数据。
链接域next用来存放下一个节点的位置
单链表操作
is_empty() 链表是否为空
length() 链表长度
travel() 遍历整个链表
add(item) 链表头部添加元素
append(item) 链表尾部添加元素
insert(pos, item) 指定位置添加元素
remove(item) 删除节点
search(item) 查找节点是否存在
实现类:
//一个节点public class Node { //节点内容 int data; //下一个节点 Node next; public Node(int data) { this.data = data; } //为节点追加节点 public Node append(Node node) { //当前节点 Node currentNode = this; //循环向后找 while (true) { //取出下一个节点 Node nextNode = currentNode.next(); //如果下一个节点为null,当前节点已经是最后一个节点 if (nextNode == null) { break; } //赋给当前节点,无线向后找 currentNode = nextNode; } //把需要追加的节点,追加为找到的当前节点(最后一个节点)的下一个节点 currentNode.next = node; return this; } //显示所有节点信息 public void show() { Node currentNode = this; while (true) { System.out.print(currentNode.data + " "); //取出下一个节点 currentNode = currentNode.next; //如果是最后一个节点 if (currentNode == null) { break; } } System.out.println(); } //插入一个节点作为当前节点的下一个节点 public void after(Node node) { //取出下一个节点,作为下下一个节点 Node nextNext = next; //把新节点作为当前节点的下一个节点 this.next = node; //把下下一个节点设置为新节点的下一个节点 node.next = nextNext; } //删除下一个节点 public void removeNode() { //取出下下一个节点 Node newNext = next.next; //把下下一个节点设置为当前节点的下一个节点 this.next = newNext; } //获取下一个节点 public Node next() { return this.next; } //获取节点中的数据 public int getData() { return this.data; } //判断节点是否为最后一个节点 public boolean isLast() { return next == null; }}测试类:
public class Demo { public static void main(String[] args) { //创建节点 Node n1 = new Node(1); Node n2 = new Node(2); Node n3 = new Node(3); //追加节点 n1.append(n2).append(n3); //取出下一个节点数据 System.out.println(n1.next().next().getData()); //3 //判断节点是否为最后一个节点 System.out.println(n1.isLast()); //false System.out.println(n1.next().next().isLast()); //true //显示所有节点信息 n1.show(); //1 2 3 //删除一个节点// n1.next.removeNode();// n1.show(); //1 2 //插入一个新节点 n1.next.after(new Node(0)); n1.show(); //1 2 0 3 }}5.2 循环链表
循环链表概念
单链表的一个变形是单向循环链表,链表中最后一个节点的 next 域不再为 None,而是指向链表的头节点。
循环链表操作
实现类:
//表示一个节点public class LoopNode { //节点内容 int data; //下一个节点 LoopNode next = this; //与单链表的区别,追加了一个this,当只有一个节点时指向自己 public LoopNode(int data) { this.data = data; } //插入一个节点 public void after(LoopNode node) { LoopNode afterNode = this.next; this.next = node; node.next = afterNode; } //删除一个节点 public void removeNext() { LoopNode newNode = this.next.next; this.next = newNode; } //获取下一个节点 public LoopNode next() { return this.next; } //获取节点中的数据 public int getData() { return this.data; }}测试类:
public class Demo { public static void main(String[] args) { //创建节点 LoopNode n1 = new LoopNode(1); LoopNode n2 = new LoopNode(2); LoopNode n3 = new LoopNode(3); LoopNode n4 = new LoopNode(4); //增加节点 n1.after(n2); n2.after(n3); n3.after(n4); System.out.println(n1.next().getData()); //2 System.out.println(n2.next().getData()); //3 System.out.println(n3.next().getData()); //4 System.out.println(n4.next().getData()); //1 }}5.3 双向循环链表
双向循环链表概念
在双向链表中有两个指针域,一个是指向前驱结点的prev,一个是指向后继结点的next指针
双向循环链表操作
实现类:
public class DoubleNode { //上一个节点 DoubleNode pre = this; //下一个节点 DoubleNode next = this; //节点数据 int data; public DoubleNode(int data) { this.data = data; } //增加节点 public void after(DoubleNode node) { //原来的下一个节点 DoubleNode nextNext = next; //新节点作为当前节点的下一个节点 this.next = node; //当前节点作为新节点的前一个节点 node.pre = this; //原来的下一个节点作为新节点的下一个节点 node.next = nextNext; //原来的下一个节点的上一个节点为新节点 nextNext.pre = node; } //获取下一个节点 public DoubleNode getNext() { return this.next; } //获取上一个节点 public DoubleNode getPre() { return this.pre; } //获取数据 public int getData() { return this.data; }}测试类:
public class Demo { public static void main(String[] args) { //创建节点 DoubleNode n1 = new DoubleNode(1); DoubleNode n2 = new DoubleNode(2); DoubleNode n3 = new DoubleNode(3); //追加节点 n1.after(n2); n2.after(n3); //查看上一个,自己,下一个节点内容 System.out.println(n2.getPre().getData()); //1 System.out.println(n2.getData()); //2 System.out.println(n2.getNext().getData()); //3 System.out.println(n1.getPre().getData()); //3 System.out.println(n3.getNext().getData()); //1 }}第6章 树结构基础
6.1 为什么要使用树结构
线性结构中不论是数组还是链表,他们都存在着诟病;比如查找某个数必须从头开始查,消耗较多的时间。使用树结构,在插入和查找的性能上相对都会比线性结构要好
6.2 树结构基本概念
示意图
1、根节点:最顶上的唯一的一个;如:A2、双亲节点:子节点的父节点就叫做双亲节点;如A是B、C、D的双亲节点,B是E、F的双亲节点
3、子节点:双亲节点所产生的节点就是子节点
4、路径:从根节点到目标节点所走的路程叫做路径;如A要访问F,路径为A-B-F
5、节点的度:有多少个子节点就有多少的度(最下面的度一定为0,所以是叶子节点)
6、节点的权:在节点中所存的数字
7、叶子节点:没有子节点的节点,就是没有下一代的节点;如:E、F、C、G
8、子树:在整棵树中将一部分看成也是一棵树,即使只有一个节点也是一棵树,不过这个树是在整个大树职中的,包含的关系
9、层:就是族谱中有多少代的人;如:A是1,B、C、D是2,E、F、G是3
10、树的高度:树的最大的层数:就是层数中的最大值
11、森林:多个树组成的集合
6.3 树的种类
无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
二叉树:每个节点最多含有两个子树的树称为二叉树;
完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树;
B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树。
6.4 树的存储与表示
顺序存储:将数据结构存储在固定的数组中,然在遍历速度上有一定的优势,但因所占空间比较大,是非主流二叉树。二叉树通常以链式存储。
链式存储:
由于对节点的个数无法掌握,常见树的存储表示都转换成二叉树进行处理,子节点个数最多为26.5 常见的一些树的应用场景
1、xml,html等,那么编写这些东西的解析器的时候,不可避免用到树
2、路由协议就是使用了树的算法
3、MySQL数据库索引
4、文件系统的目录结构
5、所以很多经典的AI算法其实都是树搜索,此外机器学习中的decision tree也是树结构
第7章 二叉树大全
7.1 二叉树的定义
任何一个节点的子节点数量不超过 2,那就是二叉树;二叉树的子节点分为左节点和右节点,不能颠倒位置
7.2 二叉树的性质(特性)
性质1:在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2:深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3:对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)
7.3 满二叉树与完全二叉树
满二叉树: 所有叶子结点都集中在二叉树的最下面一层上,而且结点总数为:
2^n-1
(n为层数 / 高度)完全二叉树: 所有的叶子节点都在最后一层或者倒数第二层,且最后一层叶子节点在左边连续,倒数第二层在右边连续(满二叉树也是属于完全二叉树)(从上往下,从左往右能挨着数满)
7.4 链式存储的二叉树
创建二叉树:首先需要一个树的类,还需要另一个类用来存放节点,设置节点;将节点放入树中,就形成了二叉树;(节点中需要权值,左子树,右子树,并且都能对他们的值进行设置)。
树的遍历:
先序遍历:根节点,左节点,右节点(如果节点有子树,先从左往右遍历子树,再遍历兄弟节点)
先序遍历结果为:A B D H I E J C F K G
中序遍历:左节点,根节点,右节点(中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数)
中遍历结果为:H D I B E J A F K C G
后序遍历:左节点,右节点,根节点
后序遍历结果:H I D J E B K F G C A
层次遍历:从上往下,从左往右
层次遍历结果:A B C D E F G H I J K查找节点:先对树进行一次遍历,然后找出要找的那个数;因为有三种排序方法,所以查找节点也分为先序查找,中序查找,后序查找;
删除节点:由于链式存储,不能找到要删的数直接删除,需要找到他的父节点,然后将指向该数设置为null;所以需要一个变量来指向父节点,找到数后,再断开连接。
代码实现:
树类
public class BinaryTree { TreeNode root; //设置根节点 public void setRoot(TreeNode root) { this.root = root; } //获取根节点 public TreeNode getRoot() { return root; } //先序遍历 public void frontShow() { if (root != null) { root.frontShow(); } } //中序遍历 public void middleShow() { if (root != null) { root.middleShow(); } } //后序遍历 public void afterShow() { if (root != null) { root.afterShow(); } } //先序查找 public TreeNode frontSearch(int i) { return root.frontSearch(i); } //删除一个子树 public void delete(int i) { if (root.value == i) { root = null; } else { root.delete(i); } }}
节点类
public class TreeNode { //节点的权 int value; //左儿子 TreeNode leftNode; //右儿子 TreeNode rightNode; public TreeNode(int value) { this.value = value; } //设置左儿子 public void setLeftNode(TreeNode leftNode) { this.leftNode = leftNode; } //设置右儿子 public void setRightNode(TreeNode rightNode) { this.rightNode = rightNode; } //先序遍历 public void frontShow() { //先遍历当前节点的值 System.out.print(value + " "); //左节点 if (leftNode != null) { leftNode.frontShow(); //递归思想 } //右节点 if (rightNode != null) { rightNode.frontShow(); } } //中序遍历 public void middleShow() { //左节点 if (leftNode != null) { leftNode.middleShow(); //递归思想 } //先遍历当前节点的值 System.out.print(value + " "); //右节点 if (rightNode != null) { rightNode.middleShow(); } } //后续遍历 public void afterShow() { //左节点 if (leftNode != null) { leftNode.afterShow(); //递归思想 } //右节点 if (rightNode != null) { rightNode.afterShow(); } //先遍历当前节点的值 System.out.print(value + " "); } //先序查找 public TreeNode frontSearch(int i) { TreeNode target = null; //对比当前节点的值 if (this.value == i) { return this; //当前节点不是要查找的节点 } else { //查找左儿子 if (leftNode != null) { //查找的话t赋值给target,查不到target还是null target = leftNode.frontSearch(i); } //如果target不为空,说明在左儿子中已经找到 if (target != null) { return target; } //如果左儿子没有查到,再查找右儿子 if (rightNode != null) { target = rightNode.frontSearch(i); } } return target; } //删除一个子树 public void delete(int i) { TreeNode parent = this; //判断左儿子 if (parent.leftNode != null && parent.leftNode.value == i) { parent.leftNode = null; return; } //判断右儿子 if (parent.rightNode != null && parent.rightNode.value == i) { parent.rightNode = null; return; } //如果都不是,递归检查并删除左儿子 parent = leftNode; if (parent != null) { parent.delete(i); } //递归检查并删除右儿子 parent = rightNode; if (parent != null) { parent.delete(i); } }}
测试类
public class Demo { public static void main(String[] args) { //创建一棵树 BinaryTree binaryTree = new BinaryTree(); //
当前题目:Java数据结构与算法的示例分析
转载源于:http://lswzjz.com/article/gpecjc.html