小编这次要给大家分享的是详解JAVA泛型,文章内容丰富,感兴趣的小伙伴可以来了解一下,希望大家阅读完这篇文章之后能够有所收获。
我们提供的服务有:网站制作、成都网站建设、微信公众号开发、网站优化、网站认证、印台ssl等。为成百上千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的印台网站制作公司
什么是泛型
泛型的概念:Java泛型(generics)是JDK1.5中引入的一个新特性,泛型提供了编译时的类型安全监测机制,该机制允许我们在编译时检测到非法的类型数据结构。
泛型的本质就是类型参数化,也就是所操作的数据类型被指定为一个参数。
使用泛型的好处:
1 在编译期间提供了类型检查
2 取数据时无须进行类型装换
泛型类、接口
泛型类
语法:
class 类名称 <泛型标识,泛型标识,泛型标识,...> { private 泛型标识 变量名; // ... }
常用的泛型标识:T、E、K、V
使用语法:
类名 <具体的数据类型> 对象名 = new 类名<具体的数据类型>();
JDK 1.7 之后,后面的 <> 中的具体的数据类型可以省略不写。
定义一个简单的泛型类:
/** * 泛型类 T:类型形参,在类创建对象时,指定具体的数据类型 * @author rainszj * 2020/3/19 */ public class GenericDemo01{ private T value; public GenericDemo01() { } public GenericDemo01(T value) { this.value = value; } @Override public String toString() { return "GenericDemo01{" + "value=" + value + '}'; } public T getValue() { return value; } public void setValue(T value) { this.value = value; } }
测试一下:
public class Test { public static void main(String[] args) { // 在创建对象时指定具体的数据类型 GenericDemo01genericDemo01 = new GenericDemo01<>("java"); // 泛型类不支持基本数据类型,但可以使用基本类型对应的包装类 GenericDemo01 genericDemo02 = new GenericDemo01<>(1); // 在泛型类对象时,不指定具体的数据类型,将会使用Object类型来接收 // 同一个泛型类,根据不同数据类型创建的对象,本质上是同一类型,公用同一个类模板 // class com.rainszj.GenericDemo01 System.out.println(genericDemo01.getClass()); // class com.rainszj.GenericDemo01 System.out.println(genericDemo02.getClass()); // true System.out.println(genericDemo01.getClass() == genericDemo02.getClass()); } }
注意事项:
泛型类,如果没有指定具体的数据类型,按Object类型来接收
泛型的类型参数只能是类类型,也就是引用数据类型,不能是基本数据类型
泛型类型在逻辑上可以看成是多个不同的类型,但实际上都是相同类型
/** * 抽奖池 * * @author rainszj * 2020/3/19 */ public class ProductGetter{ // 奖品 private T product; private ArrayList list = new ArrayList<>(); /** * 添加奖品 * * @param product */ public void addProduct(T product) { list.add(product); } /** * 抽取随机奖品 * * @return */ public T getProduct() { return list.get(new Random().nextInt(list.size())); } @Override public String toString() { return "ProductGetter{" + "product=" + product + '}'; } } public static void main(String[] args) { ProductGetter productGetter1 = new ProductGetter<>(); // 奖品类型 礼物 String[] products1 = {"华为手机", "苹果手机", "扫地机器人", "微波炉"}; // 添加奖品 for (int i = 0, length = products1.length; i < length; i++) { productGetter1.addProduct(products1[i]); } // 获取奖品 String product1 = productGetter1.getProduct(); System.out.println("恭喜您抽中了," + product1.toString()); ProductGetter productGetter2 = new ProductGetter<>(); // 奖品类型 money Integer[] products2 = {1000, 3000, 10000, 500}; for (Integer money : products2) { productGetter2.addProduct(money); } Integer product2 = productGetter2.getProduct(); System.out.println("恭喜您抽中了," + product2.toString()); }
从泛型类派生子类
子类也是泛型类,子类的泛型标识 T 要和父类的泛型标识 T 保持一致,或者是包含关系,子类的泛型标识包含父类的泛型标识
class ChildGenericextends ParentGeneric class ChildGeneric extends ParentGeneric
子类不是泛型类,父类要明确泛型的数据类型
class ChildGeneric extends ParentGeneric
泛型接口
语法:
interface 接口名称 <泛型标识,泛型标识,...> { 泛型标识 方法名(); }
实现泛型接口的类,不是泛型类,需要明确实现泛型接口的数据类型
public class Apple implements Generic{}
实现类也是泛型类,实现类和接口的泛型类型要一致,或者是包含关系,实现类的泛型标识包含泛型接口的泛型标识
public class Appleimplements Generic {} public class Apple implements Generic {}
定义一个泛型接口
public interface Generic{ K getKey(); }
实现其中方法:
/** * 泛型接口的实现类,是一个泛型类, * 那么要保证实现接口的泛型类的泛型标识包含泛型接口的泛型标识 */ public class Pairimplements Generic { private K key; private V value; public Pair() { } public Pair(K key, V value) { this.key = key; this.value = value; } @Override public K getKey() { return key; } public V getValue() { return value; } @Override public String toString() { return "Pair{" + "key=" + key + ", value=" + value + '}'; } }
测试:
public class MyTest { public static void main(String[] args) { Pairpair = new Pair<>("数学", 100); System.out.println(pair.toString()); // Pair{key=数学, value=100} } }
泛型方法
普通泛型方法
泛型类,是在实例化类时指明泛型的具体类型。
泛型方法,是在调用方法时,指明泛型的具体类型。
语法:
修饰符返回值类型 方法名(形参列表) { // 方法体... }
public
与返回值中间
(泛型列表)非常重要,可以理解为声明此方法为泛型方法。
只有声明了
的方法才是泛型方法,泛型类中使用了泛型的成员方法并不是泛型方法
表明该方法将使用泛型类型 T,此时才可以在方法中使用泛型类型 T。
public class ProductSetter{ private T product; private Random random= new Random(); private ArrayList list = new ArrayList<>(); public void addProduct(T product) { list.add(product); } /** * @param list * @param 泛型方法的类型,是在调用泛型方法时确定的 * @return */ public E getProduct(ArrayList list) { return list.get(random.nextInt(list.size())); } public T getProduct() { return list.get(random.nextInt(list.size())); } @Override public String toString() { return "ProductSetter{" + "product=" + product + '}'; } }
测试:
public static void main(String[] args) { ProductSetterproductSetter = new ProductSetter<>(); String[] products1 = {"华为手机", "苹果手机", "扫地机器人", "微波炉"}; for (int i = 0; i < products1.length; i++) { productSetter.addProduct(products1[i]); } System.out.println(productSetter.getProduct()); ArrayList list1 = new ArrayList<>(); list1.add("华硕电脑"); list1.add("苹果电脑"); list1.add("华为电脑"); String product1 = productSetter.getProduct(list1); System.out.println(product1 + "\t" + product1.getClass().getSimpleName()); // 华为电脑 String ArrayList list2 = new ArrayList<>(); list2.add(1); list2.add(2); list2.add(3); Integer product2 = productSetter.getProduct(list2); System.out.println(product2 + "\t" + product2.getClass().getSimpleName()); // 2 Integer }
静态泛型方法
public staticvoid pringType(T k1, E k2, K k3) { System.out.println(k1 + "\t" + k1.getClass().getSimpleName()); System.out.println(k2 + "\t" + k2.getClass().getSimpleName()); System.out.println(k3 + "\t" + k3.getClass().getSimpleName()); } // 方法的调用 ProductSetter.pringType(1, "hello", false);
// 输出结果
1 Integer
hello String
false Boolean
注意:
// 在泛型类中无法添加静态的 带有泛型成员方法,但可以添加静态的 泛型方法 public class Test{ // 带有泛型的成员方法 // 错误 public static T getKey(T key) { return key; } // 泛型方法 // 正确 public static E getKey(E key) { return key; } }
泛型方法中的可变参数
public class MyTest { public static void main(String[] args) { MyTest.print(1, 2, 3); } /** * 泛型方法中的可变长参数 * @param value * @param*/ public static void print(E ... value) { for (int i = 0; i < value.length; i++) { System.out.println(value[i]); } } }
总结:
泛型方法能使方法独立于类而产生变化。
如果 static
方法要使用泛型能力,就必须使其成为泛型方法。
类型通配符
类型通配符一般是使用 ?
代替具体的类型实参。
类型通配符是类型实参,而不是类型形参。
我们先来定义一个简单的泛型类:
public class Box{ private T width; public static void showBox(Box box) { Number width = box.getWidth(); System.out.println(width); } public T getWidth() { return width; } public void setWidth(T width) { this.width = width; } }
main方法:
public static void main(String[] args) { Boxbox1 = new Box (); box1.setWidth(100); showBox(box1); }
当我们在 main 方法中增加这一段代码时,就会报错
Boxbox2 = new Box<>(); box2.setWidth(200); showBox(box2);
虽然 Integer 类继承自 Number 类,但在类型通配符中不存在继承这一概念!
也许你会使用方法的重载,但是 在同一个泛型类中,根据不同数据类型创建的对象,本质上是同一类型,公用同一个类模板,所以无法通过方法的重载,传递不同的泛型类型。
这时可以使用类型通配符 ?
,来代表具体的类型实参!
public static void showBox(Box<?> box) { Object width = box.getWidth(); System.out.println(width); }
类型通配符的上限
在我们上面的showBox()代码中,发现 box.getWidth()
得到的还是Object类型,这和我们不使用类型通配符,得到的结果是一样的。这时我们可以使用类型通配符的上限。
语法:
类/接口 <? entends 实参类型>
要求该泛型的类型,只能是实参类型,或者是实参类型的子类类型。
public static void showBox(Box<? extends Number> box) { Number width = box.getWidth(); System.out.println(width); } public static void main(String[] args) { Boxbox2 = new Box<>(); box2.setWidth(200); showBox(box2); }
使用类型通配符的下限,无法得知该类型具体是指定的类型,还是该类型的子类类型,因此无法在 List 集合中执行添加该类或者该类子类的操作!
public static void showAnimal(List<? extends Cat> list) { // 错误 list.add(new Cat()); list.add(new MiniCat()); }
类型通配符的下限
语法
类/接口 <? super 实参类型>
要求该泛型的类型,只能是实参类型,或者是实参类型的父类类型。
下面通过 TreeSet 集合中的一个构造方法来进一步理解 类型通配符的下限
public TreeSet(Comparator<? super E> comparator) { this(new TreeMap<>(comparator)); }
首先是一个Animal类,只有一个 name 属性
public class Animal { private String name; public Animal(String name) { this.name = name; } public String getName() { return name; } public void setName(String name) { this.name = name; } @Override public String toString() { return "Animal{" + "name='" + name + '\'' + '}'; } }
然后它的一个子类,Cat添加一个属性:age
public class Cat extends Animal { private int age; public Cat(String name, int age) { super(name); this.age = age; } public int getAge() { return age; } public void setAge(int age) { this.age = age; } @Override public String toString() { return "Cat{" + "age=" + age + '}'; } }
最后是 Cat 的子类,MiniCat,再添加一个属性 level
public class MiniCat extends Cat { private int level; public MiniCat(String name, int age, int level) { super(name, age); this.level = level; } public int getLevel() { return level; } public void setLevel(int level) { this.level = level; } @Override public String toString() { return "MiniCat{" + "level=" + level + '}'; } }
测试,首先我们要在MyTest类通过静态内部类的方式,实现比较的接口,在构造TreeSet时,传递比较器
public class MyTest { public static void main(String[] args) { // 正常 // TreeSetanimals = new TreeSet (new Comparator1()); // 正常 TreeSet animals = new TreeSet (new Comparator2()); // 报错 // TreeSet animals = new TreeSet (new Comparator3()); List list = Arrays.asList(new Cat("a", 12), new Cat("c", 9), new Cat("b", 20)); animals.addAll(list); animals.forEach(System.out::println); } public static class Comparator1 implements Comparator { @Override public int compare(Animal o1, Animal o2) { return o1.getName().compareTo(o2.getName()); } } public static class Comparator2 implements Comparator { @Override public int compare(Cat o1, Cat o2) { return o1.getAge() - o2.getAge(); } } public static class Comparator3 implements Comparator { @Override public int compare(MiniCat o1, MiniCat o2) { return o1.getLevel() - o2.getLevel(); } } }
结论:
通过以上的比较,我们可以看出,类型通配符的下限,只能传递实参类型的或者实参类型的父类类型。
我们每次比较使用的都是 Cat 类型,但在 Comparator1
比较的是 Animal 中的 name 属性,这是因为 我们在初始化 Cat 对象的时候,一定会先初始化 Animal 对象,也就是创建子类对象的时候,一定会先创建父类对象,所以才可以进行比较。
如果是使用 类型通配符的上限,在创建对象时,比较的是该类的子类对象中的属性,就会造成空指针异常!也就是Comparator3
无法使用的原因, 所以在 TreeSet
中才会使用 <? super E>
,类型通配符的下限。
类型擦除
泛型是Java 1.5 引进的概念,在这之前是没有泛型的,但是,泛型代码能够很好地和之前的代码兼容。那是因为,泛型信息只存在编译阶段,在进入 JVM 之前,与泛型相关的信息会被擦除掉,我们称之为——类型擦除。
无限类型擦除
先定义一个泛型类:
public class Erasure{ private T key; public T getKey() { return key; } public void setKey(T key) { this.key = key; } }
输出结构:
public static void main(String[] args) { Erasureerasure = new Erasure<>(); Class<? extends Erasure> cls = erasure.getClass(); Field[] fields = cls.getDeclaredFields(); for (Field field : fields) { System.out.println(field.getName() + ":" + field.getType().getSimpleName()); // key:Object } }
可以发现在编译完成后的字节码文件中,T --> Object 类型
有限类型擦除
还是刚才的泛型类,只不过加了泛型的上限
public class Erasure{// ...}
测试不变,输出结果:
key:Number
当我们指定了泛型的上限时,它会将我们的泛型擦除为上限类型
同样对泛型方法,也是一样的道理
// 泛型方法 publicE test(E t) { return t; }
Method[] methods = cls.getDeclaredMethods(); for (Method method : methods) { System.out.println(method.getName() + ":" + method.getReturnType().getSimpleName()); } // 输出结果 // getKey:Number // test:List // setKey:void
桥接方法
泛型接口
public interface Info{ T test(T value); }
泛型接口的实现类
public class InfoImpl implements Info{ @Override public Integer test(Integer value) { return value; } }
测试
public static void main(String[] args) { Class cls = InfoImpl.class; Method[] methods = cls.getDeclaredMethods(); for (Method method : methods) { System.out.println(method.getName() + ":" + method.getReturnType().getSimpleName()); } } // 输出结果: // test:Integer // test:Object
原本 InfoImpl 中只是实现了 Info 接口中的一个方法,但通过反射却拿到了两个方法。其中返回值为 Object 的方法就是桥接方法。
在编译完成后,类型擦除的结果是这样的:
public interface Info { Object test(Object value); }
public class InfoImpl implements Info { public Integer test(Integer value) { return value; } // 桥接方法:保持接口和类的实现关系 @Override public Object test(Object value) { return (Integer)value; } }
泛型数组
开发中,一般常用的是泛型集合
泛型数组的创建:
可以声明带泛型的数组引用,但是不能直接创建带泛型数组对象。
可以通过 java.lang.reflect.Array
的 newInstance(Class
创建 T[ ] 数组。
// 可以创建带泛型的数组引用 ArrayList[] arrayLists1 = new ArrayList[3]; // 无法创建带泛型的数组对象 ArrayList [] arrayLists2 = new ArrayList [3];
简单使用 java.lang.reflect.Array
的 newInstance(Class
创建 T[ ] 数组。 封装一个泛型数组
public class GenericArray{ private T[] array; public GenericArray(Class cls, int length) { this.array = (T[]) Array.newInstance(cls, length); } public void put(int index, T item) { this.array[index] = item; } public T get(int index) { return this.array[index]; } public T[] getArray() { return this.array; } public static void main(String[] args) { GenericArray ga = new GenericArray<>(String.class, 3); ga.put(0, "白虎"); ga.put(1, "青龙"); ga.put(2, "朱雀"); System.out.println(Arrays.toString(ga.getArray())); } }
泛型和反射
反射常用的泛型类:
Class
Constructor
通过反射创建对象,带泛型和不带泛型
ClasscatClass1 = Cat.class; try { Constructor c1 = catClass1.getConstructor(); Cat cat = c1.newInstance(); } catch (Exception e) { e.printStackTrace(); } Class catClass2 = Cat.class; try { Constructor c2 = catClass2.getConstructor(); Object cat2 = c2.newInstance(); } catch (Exception e) { e.printStackTrace(); }
看完这篇关于详解JAVA泛型的文章,如果觉得文章内容写得不错的话,可以把它分享出去给更多人看到。
网站栏目:详解JAVA泛型
网页链接:http://lswzjz.com/article/ghoggo.html