C++实现二叉树基本操作详解
树是一种重要的非线性数据结构,二叉树是树型结构的一种重要类型。本学年论文介绍了二叉树的定义,二叉树的存储结构,二叉树的相关术语,以此引入二叉树这一概念,为展开二叉树的基本操作做好理论铺垫。二叉树的基本操作主要包含以下几个模块:二叉树的遍历方法,计算二叉树的结点个数,计算二叉树的叶子结点个数,二叉树深度的求解等内容。
成都创新互联公司2013年成立,是专业互联网技术服务公司,拥有项目网站制作、网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元资中做网站,已为上家服务,为资中各地企业和个人服务,联系电话:13518219792
前序遍历(递归&非递归)
- 访问根节点
- 前序访问左子树
- 前序访问右子树
//前序非递归 void PrevOrder() { stacks; Node *cur = _root; while (cur || !s.empty()) { while (cur) { cout << cur->_data << " "; s.push(cur); cur = cur->_left; } //此时当前节点的左子树已遍历完毕 Node *tmp = s.top(); s.pop(); cur = tmp->_right; } cout << endl; } //前序递归 void PrevOrderR() { _PrevOrder(_root); cout << endl; } void _PrevOrder(Node *root) { if (root == NULL) //必须有递归出口!!! return; cout << root->_data << " "; _PrevOrder(root->_left); _PrevOrder(root->_right); }
中序遍历(递归&非递归)
- 中序访问左子树
- 访问根节点
- 中序访问右子树
//中序非递归 void InOrder() { stacks; Node *cur = _root; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_left; } //此时当前节点的左子树已遍历完毕 Node *tmp = s.top(); cout << tmp->_data << " "; s.pop(); cur = tmp->_right; } cout << endl; } //中序递归 void InOrderR() { _InOrder(_root); cout << endl; } void _InOrder(Node *root) { if (root == NULL) return; _InOrder(root->_left); cout << root->_data << " "; _InOrder(root->_right); }
后序遍历(递归&非递归)
//后序非递归 //后序遍历可能会出现死循环,所以要记录下前一个访问的节点 void PostOrder() { stacks; Node *cur = _root; Node *prev = NULL; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_left; } Node *tmp = s.top(); if (tmp->_right && tmp->_right != prev) { cur = tmp->_right; } else { cout << tmp->_data << " "; prev = tmp; s.pop(); } } cout << endl; } //后序递归 void PostOrderR() { _PostOrder(_root); cout << endl; } void _PostOrder(Node *root) { if (root == NULL) return; _PostOrder(root->_left); _PostOrder(root->_right); cout << root->_data << " "; }
层序遍历
从根节点开始,依次访问每层结点。
利用队列先进先出的特性,把每层结点从左至右依次放入队列。
void LevelOrder() //利用队列!!! { queueq; Node *front = NULL; //1.push根节点 if (_root) { q.push(_root); } //2.遍历当前节点,push当前节点的左右孩子,pop当前节点 //3.遍历当前节点的左孩子,再遍历右孩子,循环直至队列为空 while (!q.empty()) { front = q.front(); cout << front->_data << " "; if (front->_left) q.push(front->_left); if (front->_right) q.push(front->_right); q.pop(); } cout << endl; }
求二叉树的高度
size_t Depth() { return _Depth(_root); } size_t _Depth(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else { size_t leftDepth = _Depth(root->_left) + 1; size_t rightDepth = _Depth(root->_right) + 1; return leftDepth > rightDepth ? leftDepth : rightDepth; } }
求叶子节点的个数
size_t LeafSize() { return _LeafSize(_root); } size_t _LeafSize(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else return _LeafSize(root->_left) + _LeafSize(root->_right); }
求二叉树第k层的节点个数
size_t GetKLevel(int k) { return _GetKLevel(_root, k); } size_t _GetKLevel(Node *root, int k) { if (root == NULL) return 0; else if (k == 1) return 1; else return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1); }
完整代码如下:
templatestruct BinaryTreeNode { T _data; BinaryTreeNode *_left; BinaryTreeNode *_right; BinaryTreeNode(const T& d) :_data(d) , _left(NULL) , _right(NULL) {} }; template class BinaryTree { public: typedef BinaryTreeNode Node; BinaryTree() :_root(NULL) {} BinaryTree(T *arr, size_t n, const T& invalid) { size_t index = 0; _root = _CreateBinaryTree(arr, n, invalid, index); } BinaryTree(const BinaryTree & t) :_root(NULL) { _root = _CopyTree(t._root); } BinaryTree & operator=(const BinaryTree & t) { if (this != t) { Node *tmp = new Node(t._root); if (tmp != NULL) { delete _root; _root = tmp; } } return *this; } ~BinaryTree() { _DestroyTree(_root); cout << endl; } //前序非递归 void PrevOrder() { stack s; Node *cur = _root; while (cur || !s.empty()) { while (cur) { cout << cur->_data << " "; s.push(cur); cur = cur->_left; } //此时当前节点的左子树已遍历完毕 Node *tmp = s.top(); s.pop(); cur = tmp->_right; } cout << endl; } //前序递归 void PrevOrderR() { _PrevOrder(_root); cout << endl; } //中序非递归 void InOrder() { stack s; Node *cur = _root; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_left; } //此时当前节点的左子树已遍历完毕 Node *tmp = s.top(); cout << tmp->_data << " "; s.pop(); cur = tmp->_right; } cout << endl; } //中序递归 void InOrderR() { _InOrder(_root); cout << endl; } //后序非递归 //后序遍历可能会出现死循环,所以要记录下前一个访问的节点 void PostOrder() { stack s; Node *cur = _root; Node *prev = NULL; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_left; } Node *tmp = s.top(); if (tmp->_right && tmp->_right != prev) { cur = tmp->_right; } else { cout << tmp->_data << " "; prev = tmp; s.pop(); } } cout << endl; } //后序递归 void PostOrderR() { _PostOrder(_root); cout << endl; } void LevelOrder() //利用队列!!! { queue q; Node *front = NULL; //1.push根节点 if (_root) { q.push(_root); } //2.遍历当前节点,push当前节点的左右孩子,pop当前节点 //3.遍历当前节点的左孩子,再遍历右孩子,循环直至队列为空 while (!q.empty()) { front = q.front(); cout << front->_data << " "; if (front->_left) q.push(front->_left); if (front->_right) q.push(front->_right); q.pop(); } cout << endl; } size_t Size() { return _Size(_root); } size_t LeafSize() { return _LeafSize(_root); } size_t GetKLevel(int k) { return _GetKLevel(_root, k); } size_t Depth() { return _Depth(_root); } Node* Find(const T& d) { return _Find(_root, d); } protected: Node* _CreateBinaryTree(T *arr, size_t n, const T& invalid, size_t& index) { Node *root = NULL; if (index < n && arr[index] != invalid) { root = new Node(arr[index]); index++; root->_left = _CreateBinaryTree(arr, n, invalid, index); index++; root->_right = _CreateBinaryTree(arr, n, invalid, index); } return root; } Node* _CopyTree(Node *root) { Node *newRoot = NULL; if (root) { newRoot = new Node(root->_data); newRoot->_left = _CopyTree(root->_left); newRoot->_right = _CopyTree(root->_right); } return newRoot; } void _DestroyTree(Node *root) { if (root) { _Destroy(root->_left); _Destroy(root->_right); delete root; } } void _PrevOrder(Node *root) { if (root == NULL) //必须有递归出口!!! return; cout << root->_data << " "; _PrevOrder(root->_left); _PrevOrder(root->_right); } void _InOrder(Node *root) { if (root == NULL) return; _InOrder(root->_left); cout << root->_data << " "; _InOrder(root->_right); } void _PostOrder(Node *root) { if (root == NULL) return; _PostOrder(root->_left); _PostOrder(root->_right); cout << root->_data << " "; } size_t _Size(Node *root) { if (root == NULL) return 0; else return _Size(root->_left) + _Size(root->_right) + 1; } size_t _LeafSize(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else return _LeafSize(root->_left) + _LeafSize(root->_right); } size_t _GetKLevel(Node *root, int k) { if (root == NULL) return 0; else if (k == 1) return 1; else return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1); } size_t _Depth(Node *root) { if (root == NULL) return 0; else if (root->_left == NULL && root->_right == NULL) return 1; else { size_t leftDepth = _Depth(root->_left) + 1; size_t rightDepth = _Depth(root->_right) + 1; return leftDepth > rightDepth ? leftDepth : rightDepth; } } Node* _Find(Node *root, const T& d) { if (root == NULL) return NULL; else if (root->_data == d) return root; else if (Node *ret = _Find(root->_left, d)) return ret; else _Find(root->_right, d); } protected: Node *_root; };
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持创新互联。
本文题目:C++实现二叉树基本操作详解
链接分享:http://lswzjz.com/article/ggieoh.html