这篇文章主要介绍了GWAS哈温平衡检验的方法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇GWAS哈温平衡检验的方法文章都会有所收获,下面我们一起来看看吧。
十载的纳雍网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。网络营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整纳雍建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联公司从事“纳雍网站设计”,“纳雍网站推广”以来,每个客户项目都认真落实执行。
「什么是哈温平衡?」
❝哈迪-温伯格(Hardy-Weinberg)法则 哈迪-温伯格(Hardy-Weinberg)法则是群体遗传中最重要的原理,它解释了繁殖如何影响群体的基因和基因型频率。这个法则是用Hardy,G.H (英国数学家) 和Weinberg,W.(德国医生)两位学者的姓来命名的,他们于同一年(1908年)各自发现了这一法则。他们提出在一个不发生突变、迁移和选择的无限大的随机交配的群体中,基因频率和基因型频率将逐代保持不变。---百度百科
❞
「怎么做哈温平衡检验?」
❝「卡方适合性检验!」,一个群体是否符合这种状况,即达到了遗传平衡,也就是一对等位基因的3种基因型的比例分布符合公式:p2+2pq+q2=1,p+q=1,(p+q)2=1.基因型MM的频率为p2,NN的频率为q2,MN的频率为2pq。MN:MN:NN=P2:2pq:q2。MN这对基因在群体中达此状态,就是达到了遗传平衡。如果没有达到这个状态,就是一个遗传不平衡的群体。但随着群体中的随机交配,将会保持这个基因频率和基因型分布比例,而较易达到遗传平衡状态。应用Hardy-Weinberg遗传平衡吻合度检验方法,把计算得到的基因频率代入,计算基因型平衡频率,再乘以总人数,求得预期值(e)。把观察数(O)与预期值(e)作比较,进行χ2检验。病例组和对照组的基因型分布的观察值和预期值差异无显著性(P>0.05),符合遗传平衡定律.
❞
「哈温平衡过滤和MAF过滤的区别?」
❝之前,我对这两个概念有点混淆,后来明白过来了。这两个概念一个是对基因频率进行的筛选,一个是对基因型频率进行的筛选。对于一个位点“AA AT TT”,其中A的频率为基因频率,AA为基因型频率。MAF直接是对基因频率进行筛选,而哈温平衡检验,则是根据基因型推断出理想的(AA,AT,TT)的分布,然后和实际观察的进行适合性检验,然后得到P值,根据P值进行筛选。即P值越小,说明该位点越不符合哈温平衡。
❞
「两个目的:」
计算所有位点的哈温检测结果 删除SNP中不符合哈温平衡的位点
1. 计算所有位点的HWE的P值
plink --bfile HapMap_3_r3_8 --hardy
plink.hwe的数据格式:
CHR 染色体 SNP SNP的ID TEST 类型 A1 minor 位点 A2 major 位点 GENO 基因型分布:A1A1, A1A2, A2A2 O(HET) 观测杂合度频率 E(HET) 期望杂合度频率 P 哈温平衡的卡方检验P-value值
结果预览:
2. 提取哈温p值小于0.0001的位点
这里我们使用awk:
awk '{if($9 < 0.0001) print $0}' plink.hwe >plinkzoomhwe.hwe
共有123个位点,其中UNAFF为45个位点。
3. 设定过滤标准1e-4
plink --bfile HapMap_3_r3_8 --hwe 1e-4 --make-bed --out HapMap_3_r3_9
日志:
Options in effect:
--bfile HapMap_3_r3_8
--hwe 1e-4
--make-bed
--out HapMap_3_r3_9
515185 MB RAM detected; reserving 257592 MB for main workspace.
1073788 variants loaded from .bim file.
163 people (79 males, 84 females) loaded from .fam.
112 phenotype values loaded from .fam.
Using 1 thread (no multithreaded calculations invoked).
Before main variant filters, 112 founders and 51 nonfounders present.
Calculating allele frequencies... done.
Total genotyping rate is 0.998136.
--hwe: 45 variants removed due to Hardy-Weinberg exact test.
1073743 variants and 163 people pass filters and QC.
Among remaining phenotypes, 56 are cases and 56 are controls. (51 phenotypes
are missing.)
--make-bed to HapMap_3_r3_9.bed + HapMap_3_r3_9.bim + HapMap_3_r3_9.fam ...
done.
可以看到,共有45个SNP根据哈温的P值过滤掉了,和上面手动计算的一样。
4. 可视化
R代码:
hwe<-read.table (file="plink.hwe", header=TRUE)
pdf("histhwe.pdf")
hist(hwe[,9],main="Histogram HWE")
dev.off()
hwe_zoom<-read.table (file="plinkzoomhwe.hwe", header=TRUE)
pdf("histhwe_below_theshold.pdf")
hist(hwe_zoom[,9],main="Histogram HWE: strongly deviating SNPs only")
dev.off()
哈温的P值直方图:
过滤掉SNP位点的P值:
过滤后的结果文件
HapMap_3_r3_9.bed HapMap_3_r3_9.bim HapMap_3_r3_9.fam HapMap_3_r3_9.log
关于“GWAS哈温平衡检验的方法”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“GWAS哈温平衡检验的方法”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注创新互联行业资讯频道。
分享题目:GWAS哈温平衡检验的方法
链接地址:http://lswzjz.com/article/gdciho.html