Python中excel和shp如何使用在matplotlib-创新互联
这篇文章主要介绍了Python中excel和shp如何使用在matplotlib,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
专注于为中小企业提供成都网站制作、网站设计、外贸网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业贵港免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上千余家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。关于excel和shp的使用在matplotlib
使用pandas 对excel进行简单操作
使用cartopy 读取shpfile 展示到matplotlib中
利用shpfile文件中的一些字段进行一些着色处理
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : map02.py # @Author: huifer # @Date : 2018/6/28 import folium import pandas as pd import requests import matplotlib.pyplot as plt import cartopy.crs as ccrs import zipfile import cartopy.io.shapereader as shaperead from matplotlib import cm from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter import os dataurl = "http://image.data.cma.cn/static/doc/A/A.0012.0001/SURF_CHN_MUL_HOR_STATION.xlsx" shpurl = "http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_countries.zip" def download_file(url): """ 根据url下载文件 :param url: str """ r = requests.get(url, allow_redirects=True) try: open(url.split('/')[-1], 'wb').write(r.content) except Exception as e: print(e) def degree_conversion_decimal(x): """ 度分转换成十进制 :param x: float :return: integer float """ integer = int(x) integer = integer + (x - integer) * 1.66666667 return integer def unzip(zip_path, out_path): """ 解压zip :param zip_path:str :param out_path: str :return: """ zip_ref = zipfile.ZipFile(zip_path, 'r') zip_ref.extractall(out_path) zip_ref.close() def get_record(shp, key, value): countries = shp.records() result = [country for country in countries if country.attributes[key] == value] countries = shp.records() return result def read_excel(path): data = pd.read_excel(path) # print(data.head(10)) # 获取几行 # print(data.ix[data['省份']=='浙江',:].shape[0]) # 计数工具 # print(data.sort_values('观测场拔海高度(米)',ascending=False).head(10))# 根据值排序 # 判断经纬度是什么格式(度分 、 十进制) 判断依据 %0.2f 是否大于60 # print(data['经度'].apply(lambda x:x-int(x)).sort_values(ascending=False).head()) # 结果判断为度分保存 # 坐标处理 data['经度'] = data['经度'].apply(degree_conversion_decimal) data['纬度'] = data['纬度'].apply(degree_conversion_decimal) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([70, 140, 15, 55]) ax.stock_img() ax.scatter(data['经度'], data['纬度'], s=0.3, c='g') # shp = shaperead.Reader('ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp') # # 抽取函数 州:国家 # city_list = [country for country in countries if country.attributes['ADMIN'] == 'China'] # countries = shp.records() plt.savefig('test.png') plt.show() def gdp(shp_path): """ GDP 着色图 :return: """ shp = shaperead.Reader(shp_path) cas = get_record(shp, 'SUBREGION', 'Central Asia') gdp = [r.attributes['GDP_MD_EST'] for r in cas] gdp_min = min(gdp) gdp_max = max(gdp) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([45, 90, 35, 55]) for r in cas: color = cm.Greens((r.attributes['GDP_MD_EST'] - gdp_min) / (gdp_max - gdp_min)) ax.add_geometries(r.geometry, ccrs.PlateCarree(), facecolor=color, edgecolor='black', linewidth=0.5) ax.text(r.geometry.centroid.x, r.geometry.centroid.y, r.attributes['ADMIN'], horizontalalignment='center', verticalalignment='center', transform=ccrs.Geodetic()) ax.set_xticks([45, 55, 65, 75, 85], crs=ccrs.PlateCarree()) # x坐标标注 ax.set_yticks([35, 45, 55], crs=ccrs.PlateCarree()) # y 坐标标注 lon_formatter = LongitudeFormatter(zero_direction_label=True) lat_formatter = LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) plt.title('GDP TEST') plt.savefig("gdb.png") plt.show() def run_excel(): if os.path.exists("SURF_CHN_MUL_HOR_STATION.xlsx"): read_excel("SURF_CHN_MUL_HOR_STATION.xlsx") else: download_file(dataurl) read_excel("SURF_CHN_MUL_HOR_STATION.xlsx") def run_shp(): if os.path.exists("ne_10m_admin_0_countries"): gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp") else: download_file(shpurl) unzip('ne_10m_admin_0_countries.zip', "ne_10m_admin_0_countries") gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp") if __name__ == '__main__': # download_file(dataurl) # download_file(shpurl) # cas = get_record('SUBREGION', 'Central Asia') # print([r.attributes['ADMIN'] for r in cas]) # read_excel('SURF_CHN_MUL_HOR_STATION.xlsx') # gdp() run_excel() run_shp()
感谢你能够认真阅读完这篇文章,希望小编分享的“Python中excel和shp如何使用在matplotlib”这篇文章对大家有帮助,同时也希望大家多多支持创新互联成都网站设计公司,关注创新互联成都网站设计公司行业资讯频道,更多相关知识等着你来学习!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
本文名称:Python中excel和shp如何使用在matplotlib-创新互联
本文网址:http://lswzjz.com/article/eoshg.html