一、存储实现:put(key,vlaue)
首先我们先看源码:
10年的天涯网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整天涯建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“天涯网站设计”,“天涯网站推广”以来,每个客户项目都认真落实执行。 // 将“key-value”添加到HashMap中 public V put(K key, V value) { // 若“key为null”,则将该键值对添加到table[0]中。 if (key == null) return putForNullKey(value); // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。 int hash = hash(key.hashCode()); // 计算key hash值在table数组中的位置 ------------ (1) int i = indexFor(hash, table.length); // 迭代e,从i处开始,找到key保存的位置 ------------ (2) for (Entry Object k; // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出! if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 若“该key”对应的键值对不存在,则将“key-value”添加到table中 modCount++; //将key-value添加到table[i]处 addEntry(hash, key, value, i); return null; } |
通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,否则将该元素保存在链头(最先保存的元素放在链尾)。若table在该处没有元素,则直接保存。
1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。
2、 再看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。
static int hash(int h) { return useNewHash ? newHash(h) : oldHash(h); } |
useNewHash声明如下:
private static final boolean useNewHash; static { useNewHash = false; } |
private static int oldHash(int h) { h += ~(h << 9); h ^= (h >>> 14); h += (h << 4); h ^= (h >>> 10); return h; } private static int newHash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } |
我们知道对于HashMap的table而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算hash值后,怎么才能保证table元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,HashMap是这样处理的:调用indexFor方法。
static int indexFor(int h, int length) { return h & (length-1); } |
HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。
我们回到indexFor方法,该方法仅有一条语句:h&(length - 1) 作用:均匀分布table数据和充分利用空间。
这里我们假设length为16(2^n)和15,h为5、6、7。
length = 16 | |||
h | length - 1 | h & length -1 | |
5 | 15 | 0101 & 1111 = 00101 | 5 |
6 | 15 | 0110 & 1111 = 00110 | 6 |
7 | 15 | 0111 & 1111 = 00111 | 7 |
length = 15 | |||
5 | 14 | 0101 & 1110 = 00101 | 5 |
6 | 14 | 0110 & 1110 = 00110 | 6 |
7 | 14 | 0111 & 1110 = 00110 | 6 |
当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。
h | length - 1 | h & length - 1 | |
0 | 14 | 0000 & 1110 = 0000 | 0 |
1 | 14 | 0001 & 1110 = 0000 | 0 |
2 | 14 | 0010 & 1110 = 0010 | 2 |
3 | 14 | 0011 & 1110 = 0010 | 2 |
4 | 14 | 0100 & 1110 = 0100 | 4 |
5 | 14 | 0101 & 1110 = 0100 | 4 |
6 | 14 | 0110 & 1110 = 0110 | 6 |
7 | 14 | 0111 & 1110 = 0110 | 6 |
8 | 14 | 1000 & 1110 = 1000 | 8 |
9 | 14 | 1001 & 1110 = 1000 | 8 |
10 | 14 | 1010 & 1110 = 1010 | 10 |
11 | 14 | 1011 & 1110 = 1010 | 10 |
12 | 14 | 1100 & 1110 = 1100 | 12 |
13 | 14 | 1101 & 1110 = 1100 | 12 |
14 | 14 | 1110 & 1110 = 1110 | 14 |
15 | 14 | 1111 & 1110 = 1110 | 14 |
从上面的图表中我们看到总共发生了8此碰撞,同时发现浪费的空间非常大,有1、3、5、7、9、11、13、15处没有记录,也就是没有存放数据。这是因为他们在与14进行&运算时,得到的结果最后一位永远都是0,即0001、0011、0101、0111、1001、1011、1101、1111位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。而当length = 16时,length – 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。
这里我们再来复习put的流程:当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:
void addEntry(int hash, K key, V value, int bucketIndex) { // 获取bucketIndex处的Entry Entry // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry table[bucketIndex] = new Entry // 若HashMap中元素的个数超过极限了,则容量扩大两倍 if (size++ >= threshold) resize(2 * table.length); } |
这个方法中有两点需要注意:
一、链的产生。
系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。
二、扩容问题。
随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。
二、读取实现:get(key)
相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。
// 获取key对应的value public V get(Object key) { // 若为null,调用getForNullKey方法返回相对应的value if (key == null) // 根据该 key 的 hashCode 值计算它的 hash 码 return getForNullKey(); // 获取key的hash值 int hash = hash(key.hashCode()); // 取出 table 数组中指定索引处的值,在“该hash值对应的链表”上查找“键值等于key”的元素 for (Entry e != null; e = e.next) { Object k; //判断key是否相同,若key与查找的key相同,则返回相对应的value if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } //没找到则返回null return null; } |
在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。上海尚学堂java培训原创,陆续java技术相关文章奉上,请多关注。
文章标题:HashMap实现快速存取的原理-创新互联
本文URL:http://lswzjz.com/article/dsgseh.html