RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
Python中相关分析correlationanalysis怎么实现-创新互联

这篇文章给大家分享的是有关Python中相关分析correlation analysis怎么实现的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

索县网站建设公司创新互联公司,索县网站设计制作,有大型网站制作公司丰富经验。已为索县近千家提供企业网站建设服务。企业网站搭建\成都外贸网站建设要多少钱,请找那个售后服务好的索县做网站的公司定做!

相关分析(correlation analysis)

研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。
线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度;
r>0,线性正相关;r<0,线性负相关;
r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。

Python中相关分析correlation analysis怎么实现

相关分析函数
DataFrame.corr()
Series.corr(other)

函数说明:
如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度
如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度

返回值:
DataFrame调用;返回DataFrame

Series调用:返回一个数值型,大小为相关度

import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
 File "", line 25
  aggfunc=[numpy.size]
            ^
SyntaxError: unexpected EOF while parsing
 
 
import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
)
 
ptResult
Out[4]: 
     size    
      年龄    
性别     女   男
年龄分层        
20岁以及以下  111  1950
21岁到30岁 2903 43955
31岁到40岁  735  7994
41岁以上   567  886

感谢各位的阅读!关于“Python中相关分析correlation analysis怎么实现”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


网站标题:Python中相关分析correlationanalysis怎么实现-创新互联
链接地址:http://lswzjz.com/article/dscegp.html