使用tf.device()怎么指定运行tensorflow-创新互联
这篇文章给大家介绍使用tf.device()怎么指定运行tensorflow,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
成都一家集口碑和实力的网站建设服务商,拥有专业的企业建站团队和靠谱的建站技术,十多年企业及个人网站建设经验 ,为成都上千家客户提供网页设计制作,网站开发,企业网站制作建设等服务,包括成都营销型网站建设,成都品牌网站建设,同时也为不同行业的客户提供做网站、成都网站制作的服务,包括成都电商型网站制作建设,装修行业网站制作建设,传统机械行业网站建设,传统农业行业网站制作建设。在成都做网站,选网站制作建设服务商就选成都创新互联公司。设置使用GPU
使用 tf.device('/gpu:1') 指定Session在第二块GPU上运行:
import tensorflow as tf with tf.device('/gpu:1'): v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1') v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2') sumV12 = v1 + v2 with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess: print sess.run(sumV12)
ConfigProto() 中参数log_device_placement=True 会打印出执行操作所用的设备,以上输出:
如果安装的是GPU版本的tensorflow,机器上有支持的GPU,也正确安装了显卡驱动、CUDA和cuDNN,默认情况下,Session会在GPU上运行:
import tensorflow as tf v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1') v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2') sumV12 = v1 + v2 with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess: print sess.run(sumV12)
默认在GPU:0上执行:
设置使用cpu
tensorflow中不同的GPU使用/gpu:0和/gpu:1区分,而CPU不区分设备号,统一使用 /cpu:0
import tensorflow as tf with tf.device('/cpu:0'): v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1') v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2') sumV12 = v1 + v2 with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess: print sess.run(sumV12)
关于使用tf.device()怎么指定运行tensorflow就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
网页题目:使用tf.device()怎么指定运行tensorflow-创新互联
当前URL:http://lswzjz.com/article/dpoges.html