python三维卷积可以用什么函数? matlab只要用convn
写了一个输入和卷积核dim=2是一样的(都是3)的卷积函数,可以试试多加一个for循环变成三维卷积
成都创新互联从2013年成立,是专业互联网技术服务公司,拥有项目网站设计、成都网站建设网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元大方做网站,已为上家服务,为大方各地企业和个人服务,联系电话:13518219792
def conv3D(image, filter):
'''
三维卷积
:param image: 输入,shape为 [h,w,c], c=3
:param filter: 卷积核,shape为 [x,y,z], z=3
:return:
'''
h, w, c = image.shape
x, y, z = filter.shape
height_new = h - x + 1 # 输出 h
width_new = w - y + 1 # 输出 w
image_new = np.zeros((height_new, width_new), dtype=np.float)
for i in range(height_new):
for j in range(width_new):
r = np.sum(image[i:i+x, j:j+x, 0] * filter[:,:,0])
g = np.sum(image[i:i+y, j:j+y, 1] * filter[:,:,1])
b = np.sum(image[i:i+z, j:j+z, 2] * filter[:,:,2])
image_new[i, j] = np.sum([r,g,b])
image_new = image_new.clip(0, 255)
image_new = np.rint(image_new).astype('uint8')
return image_new
怎样用python构建一个卷积神经网络?
用keras框架较为方便
首先安装anaconda,然后通过pip安装keras
1、#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data
import random
import numpy as np
np.random.seed(1024) # for reproducibility
2、。#打乱数据
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
label = label[index]
print(data.shape[0], ' samples')
#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)
###############
#开始建立CNN模型
###############
#生成一个model
model = Sequential()
3、#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
4、全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))
#Softmax分类,输出是10类别
model.add(Dense(10, init='normal'))
model.add(Activation('softmax'))
#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
"""
#使用data augmentation的方法
#一些参数和调用的方法,请看文档
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(data)
for e in range(nb_epoch):
print('-'*40)
print('Epoch', e)
print('-'*40)
print("Training...")
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(data.shape[0])
for X_batch, Y_batch in datagen.flow(data, label):
loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)
progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )
Python 中用于两个值卷积的函数是什么,我知道matlab 中是conv,Python中有预知对应的吗
全部用文件IO的话可以这样: matlab把所有参数输出到一个文件里,然后用system命令调python脚本。python脚本读文件做计算结果再写文件。最后matlab再读文件得到结果。 假设python脚本的用法是: python xxx.py in.txt out.txt 则matlab调用命令...
网站标题:python中卷积函数 pytorch depthwise卷积
浏览路径:http://lswzjz.com/article/dosiggj.html