RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
pythonopencv实现图像边缘检测-创新互联

本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤:

在于洪等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站设计、做网站 网站设计制作定制网站制作,公司网站建设,企业网站建设,成都品牌网站建设,营销型网站建设,外贸网站制作,于洪网站建设费用合理。

1、去噪

如cv2.GaussianBlur()等函数;

2、计算图像梯度

图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式:

python opencv实现图像边缘检测

3、非极大值抑制

在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点。对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中大的。如下图所示:

python opencv实现图像边缘检测

4、滞后阈值

现在要确定那些边界才是真正的边界。这时我们需要设置两个阈值:minVal 和maxVal。当图像的灰度梯度高于maxVal 时被认为是真的边界,那些低于minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。如下图:

python opencv实现图像边缘检测

在Python Opencv接口中,提供了Canny函数,可以对图像进行一键执行边缘检测。 

接下来,利用Canny函数进行边缘检测的实验。

Canny函数需要指定几个参数:

1、需要进行边缘检测的原图
2、阈值下限
3、阈值上限

我们为了能够看到不同阈值范围对边缘检测结果的影响,设置了两个滑动条,来分别表示阈值上下限。

完整代码如下:

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 13 14:23:32 2018
@author: Leon
内容:
对图片进行边缘检测;
添加滑动条,可自由调整阈值上下限。
"""
 
import cv2
import numpy as np
 
def nothing(x):
  pass
 
cv2.namedWindow('Canny',0)
# 创建滑动条
cv2.createTrackbar('minval','Canny',0,255,nothing)
cv2.createTrackbar('maxval','Canny',0,255,nothing)
 
img = cv2.imread('Tree.jpg',0)
 
# 高斯滤波去噪
img = cv2.GaussianBlur(img,(3,3),0)
edges =img
 
k=0
while(1):
 
  key = cv2.waitKey(50) & 0xFF
  if key == ord('q'):
    break
  # 读取滑动条数值
  minval = cv2.getTrackbarPos('minval','Canny')
  maxval = cv2.getTrackbarPos('maxval','Canny')
  edges = cv2.Canny(img,minval,maxval)
  
  # 拼接原图与边缘监测结果图
  img_2 = np.hstack((img,edges))
  cv2.imshow('Canny',img_2)
 
cv2.destroyAllWindows()

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


标题名称:pythonopencv实现图像边缘检测-创新互联
文章来源:http://lswzjz.com/article/dhcodo.html