本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤:
在于洪等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站设计、做网站 网站设计制作定制网站制作,公司网站建设,企业网站建设,成都品牌网站建设,营销型网站建设,外贸网站制作,于洪网站建设费用合理。1、去噪
如cv2.GaussianBlur()等函数;
2、计算图像梯度
图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式:
3、非极大值抑制
在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点。对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中大的。如下图所示:
4、滞后阈值
现在要确定那些边界才是真正的边界。这时我们需要设置两个阈值:minVal 和maxVal。当图像的灰度梯度高于maxVal 时被认为是真的边界,那些低于minVal 的边界会被抛弃。如果介于两者之间的话,就要看这个点是否与某个被确定为真正的边界点相连,如果是就认为它也是边界点,如果不是就抛弃。如下图:
在Python Opencv接口中,提供了Canny函数,可以对图像进行一键执行边缘检测。
接下来,利用Canny函数进行边缘检测的实验。
Canny函数需要指定几个参数:
1、需要进行边缘检测的原图
2、阈值下限
3、阈值上限
我们为了能够看到不同阈值范围对边缘检测结果的影响,设置了两个滑动条,来分别表示阈值上下限。
完整代码如下:
# -*- coding: utf-8 -*- """ Created on Thu Sep 13 14:23:32 2018 @author: Leon 内容: 对图片进行边缘检测; 添加滑动条,可自由调整阈值上下限。 """ import cv2 import numpy as np def nothing(x): pass cv2.namedWindow('Canny',0) # 创建滑动条 cv2.createTrackbar('minval','Canny',0,255,nothing) cv2.createTrackbar('maxval','Canny',0,255,nothing) img = cv2.imread('Tree.jpg',0) # 高斯滤波去噪 img = cv2.GaussianBlur(img,(3,3),0) edges =img k=0 while(1): key = cv2.waitKey(50) & 0xFF if key == ord('q'): break # 读取滑动条数值 minval = cv2.getTrackbarPos('minval','Canny') maxval = cv2.getTrackbarPos('maxval','Canny') edges = cv2.Canny(img,minval,maxval) # 拼接原图与边缘监测结果图 img_2 = np.hstack((img,edges)) cv2.imshow('Canny',img_2) cv2.destroyAllWindows()
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
标题名称:pythonopencv实现图像边缘检测-创新互联
文章来源:http://lswzjz.com/article/dhcodo.html