这篇文章将为大家详细讲解有关如何在python中使用pandas.DataFrame.loc函数,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
成都创新互联是一家以网络技术公司,为中小企业提供网站维护、网站设计、网站建设、网站备案、服务器租用、域名与空间、软件开发、成都小程序开发等企业互联网相关业务,是一家有着丰富的互联网运营推广经验的科技公司,有着多年的网站建站经验,致力于帮助中小企业在互联网让打出自已的品牌和口碑,让企业在互联网上打开一个面向全国乃至全球的业务窗口:建站服务热线:18982081108一、选择数值
1、生成df
df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) df Out[15]: max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8
2、Single label. 单个 row_label 返回的Series
df.loc['viper'] Out[17]: max_speed 4 shield 5 Name: viper, dtype: int64
2、List of labels. 列表 row_label 返回的DataFrame
df.loc[['cobra','viper']] Out[20]: max_speed shield cobra 1 2 viper 4 5
3、Single label for row and column 同时选定行和列
df.loc['cobra', 'shield'] Out[24]: 2
4、Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. 同时选定多个行和单个列,注意的是通过列表选定多个row label 时,首位均是选定的。
df.loc['cobra':'viper', 'max_speed'] Out[25]: cobra 1 viper 4 Name: max_speed, dtype: int64
5、Boolean list with the same length as the row axis 布尔列表选择row label
布尔值列表是根据某个位置的True or False 来选定,如果某个位置的布尔值是True,则选定该row
df Out[30]: max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 df.loc[[True]] Out[31]: max_speed shield cobra 1 2 df.loc[[True,False]] Out[32]: max_speed shield cobra 1 2 df.loc[[True,False,True]] Out[33]: max_speed shield cobra 1 2 sidewinder 7 8
6、Conditional that returns a boolean Series 条件布尔值
df.loc[df['shield'] > 6] Out[34]: max_speed shield sidewinder 7 8
7、Conditional that returns a boolean Series with column labels specified 条件布尔值和具体某列的数据
df.loc[df['shield'] > 6, ['max_speed']] Out[35]: max_speed sidewinder 7
8、Callable that returns a boolean Series 通过函数得到布尔结果选定数据
df Out[37]: max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 df.loc[lambda df: df['shield'] == 8] Out[38]: max_speed shield sidewinder 7 8
二、赋值
1、Set value for all items matching the list of labels 根据某列表选定的row 及某列 column 赋值
df.loc[['viper', 'sidewinder'], ['shield']] = 50 df Out[43]: max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50
2、Set value for an entire row 将某行row的数据全部赋值
df.loc['cobra'] =10 df Out[48]: max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50
3、Set value for an entire column 将某列的数据完全赋值
df.loc[:, 'max_speed'] = 30 df Out[50]: max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50
4、Set value for rows matching callable condition 条件选定rows赋值
df.loc[df['shield'] > 35] = 0 df Out[52]: max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0
三、行索引是数值
df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) df Out[54]: max_speed shield 7 1 2 8 4 5 9 7 8
通过 行 rows的切片的方式取多个:
df.loc[7:9] Out[55]: max_speed shield 7 1 2 8 4 5 9 7 8
四、多维索引
1、生成多维索引
tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] index = pd.MultiIndex.from_tuples(tuples) values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) df Out[57]: max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36
2、Single label. 传入的就是最外层的row label,返回DataFrame
df.loc['cobra'] Out[58]: max_speed shield mark i 12 2 mark ii 0 4
3、Single index tuple.传入的是索引元组,返回Series
df.loc[('cobra', 'mark ii')] Out[59]: max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64
4、Single label for row and column.如果传入的是row和column,和传入tuple是类似的,返回Series
df.loc['cobra', 'mark i'] Out[60]: max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64
5、Single tuple. Note using [[ ]] returns a DataFrame.传入一个数组,返回一个DataFrame
df.loc[[('cobra', 'mark ii')]] Out[61]: max_speed shield cobra mark ii 0 4
6、Single tuple for the index with a single label for the column 获取某个colum的某row的数据,需要左边传入多维索引的tuple,然后再传入column
df.loc[('cobra', 'mark i'), 'shield'] Out[62]: 2
7、传入多维索引和单个索引的切片:
df.loc[('cobra', 'mark i'):'viper'] Out[63]: max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 df.loc[('cobra', 'mark i'):'sidewinder'] Out[64]: max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 df.loc[('cobra', 'mark i'):('sidewinder','mark i')] Out[65]: max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20
关于如何在python中使用pandas.DataFrame.loc函数就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
分享题目:如何在python中使用pandas.DataFrame.loc函数-创新互联
文章URL:http://lswzjz.com/article/dghpco.html