RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:8:30-17:00
你可能遇到了下面的问题
关闭右侧工具栏

新闻中心

这里有您想知道的互联网营销解决方案
Python实现简单层次聚类算法以及可视化-创新互联

本文实例为大家分享了Python实现简单层次聚类算法,以及可视化,供大家参考,具体内容如下

成都创新互联-专业网站定制、快速模板网站建设、高性价比维西网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式维西网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖维西地区。费用合理售后完善,十余年实体公司更值得信赖。

基本的算法思路就是:把当前组间距离最小的两组合并成一组。

算法的差异在算法如何确定组件的距离,一般有大距离,最小距离,平均距离,马氏距离等等。

代码如下:

import numpy as np
import data_helper
np.random.seed(1)
def get_raw_data(n):
 _data=np.random.rand(n,2)
 #生成数据的格式是n个(x,y)
 _groups={idx:[[x,y]] for idx,(x,y) in enumerate(_data)}
 return _groups
def cal_distance(cluster1,cluster2):
 #采用最小距离作为聚类标准
 _min_distance=10000
 for x1,y1 in cluster1:
  for x2,y2 in cluster2:
   _distance=(x1-x2)**2+(y1-y2)**2
   if _distance<_min_distance:
    _min_distance=_distance
 return _distance
groups=get_raw_data(10)
count=0
while len(groups)!=1:#判断是不是所有的数据是不是归为了同一类
 min_distance=10000
 len_groups=len(groups)
 
 for i in groups.keys():
  for j in groups.keys():
   if i>=j:
    continue
   distance=cal_distance(groups[i],groups[j])
   if distancei
 groups[min_i].extend(groups.pop(min_j))
 data_helper.draw_data(groups)
 #一共n个簇,共迭代n-1次

网站题目:Python实现简单层次聚类算法以及可视化-创新互联
本文链接:http://lswzjz.com/article/cocpcj.html